

EXPONENTIAL FUNCTIONS AND THEIR **GRAPHS**

What You Should Learn

- Recognize and evaluate exponential functions with base a.
- Graph exponential functions and use the One-to-One Property.
- Recognize, evaluate, and graph exponential functions with base e.
- · Use exponential functions to model and solve real-life problems.

Exponential Functions

Transcendental Functions

Definition of Exponential Function

The **exponential function** f **with base** a is denoted by

$$f(x) = a^x$$

where a > 0, $a \ne 1$, and x is any real number.

$$f(x) = 4^x$$

$$f(x) = 4^{x}$$

 $f(3) = 4^{3} = 64$ $f\left(\frac{1}{2}\right) = 4^{\frac{1}{2}}$

Exponential Functions

$$a^{\sqrt{2}}$$
 (where $\sqrt{2} \approx 1.41421356$)

as the number that has the successively closer approximations

$$a^{1.4}$$
, $a^{1.41}$, $a^{1.414}$, $a^{1.4142}$, $a^{1.41421}$,

xample 1 – Evaluating Exponential Functions

Use a calculator to evaluate each function at the indicated value of x.

Function

Value

a.
$$f(x) = 2^x$$

$$x = -3.1$$

b.
$$f(x) = 2^{-x}$$

$$x = \pi$$

c.
$$f(x) = 0.6^x$$

$$\mathbf{x} = \frac{3}{2}$$

Example 1 – Solution

Function Value

Graphing Calculator Keystrokes

Display

a.
$$f(-3.1) = 2^{-3.1}$$

b.
$$f(\pi) = 2^{-\pi}$$

$$2 \land \bigcirc \pi$$
 ENTER

c.
$$f(\frac{3}{2}) = 0.6^{3/2}$$

c.
$$f(\frac{3}{2}) = 0.6^{3/2}$$
 .6 \(\hat{1} \) (3 \(\div \) 2 \(\hat{2} \) ENTER

Graphs of Exponential Functions

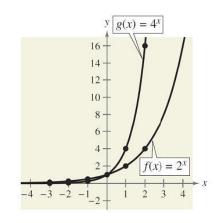
Example 2 – Graphs of $y = a^x$

In the same coordinate plane, sketch the graph of each function.

a.
$$f(x) = 2^x$$

b.
$$g(x) = 4^x$$

Х	-3	-2	-1	0	1	2
2^x	<u>1</u> 8	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4
4 ^x	<u>1</u> 64	<u>1</u> 16	$\frac{1}{4}$	1	4	16



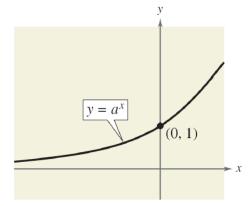
Graph of $y = a^x$, a > 1

• Domain: $(-\infty, \infty)$

• Range: (0,∞)

• *y*-intercept: (0, 1)

· Increasing



- x-axis is a horizontal asymptote ($a^x \rightarrow 0$, as $x \rightarrow -\infty$).
- Continuous

Graph of $y = a^{-x}, a > 1$

- Domain: $(-\infty, \infty)$
- Range: (0,∞)
- *y*-intercept: (0, 1)
- · Decreasing
- x-axis is a horizontal asymptote ($a^{-x} \rightarrow 0$, as $x \rightarrow \infty$).
- Continuous

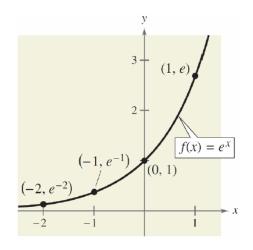
For a > 0 and $a \ne 1$, $a^x = a^y$ if and only if x = y.

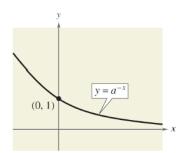
One-to-One Property

natural base

natural exponential function

$$f(x) = e^x$$





Use a calculator to evaluate the function given by $f(x) = e^x$ at each indicated value of x.

a.
$$x = -2$$

b.
$$x = -1$$

c.
$$x = 0.25$$

d.
$$x = -0.3$$

Example 6 – Solution

Function Value Graphing Calculator Keystrokes Display

a.
$$f(-2) = e^{-2}$$

$$e^x$$
 (-) 2 ENTER

b.
$$f(-1) = e^{-1}$$

$$e^{x}$$
 $(-)$ 1 $ENTER$

c.
$$f(0.25) = e^{0.25}$$

$$e^x$$
 0.25 ENTER

d.
$$f(-0.3) = e^{-0.3}$$

$$e^x$$
 (-) 0.3 (ENTER)

Applications

Applications: Continuously Compounded Interest

Suppose a principal P is invested at an annual interest rate r, compounded once per year. If the interest is added to the principal at the end of the year, the new balance P_1 is

$$P_1 = P + Pr$$

 $= P(1 + r)$
Year Balance After Each Compounding
 $0 P = P$
 $1 P_1 = P(1 + r)$
 $2 P_2 = P_1(1 + r) = P(1 + r)(1 + r) = P(1 + r)^2$
 $3 P_3 = P_2(1 + r) = P(1 + r)^2(1 + r) = P(1 + r)^3$
 \vdots
 $t P_t = P(1 + r)^t$

Applications

Let *n* be the number of compoundings per year and let *t* be the number of years.

Then the rate per compounding is r/n and the account balance after t years is

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$
. Amount (balance) with *n* compoundings per year

If you let the number of compoundings *n* increase without bound, the process approaches what is called **continuous compounding**.

Applications

In the formula for n compoundings per year, let m = n/r. This produces

$$A = P \bigg(1 + rac{r}{n} \bigg)^{nt}$$
 Amount with n compoundings per year $= P \bigg(1 + rac{r}{mr} \bigg)^{mrt}$ Substitute mr for n . Simplify.

$$=P\left[\left(1+\frac{1}{m}\right)^{m}\right]^{rt}$$
. Property of exponents

Applications

As m increases without bound, the table below shows that $[1 + (1/m)]^m \rightarrow e$ as $m \rightarrow \infty$.

From this, you can conclude that the formula for continuous compounding is

$$A = Pe^{rt}$$
. Substitute e for $(1 + 1/m)^m$.

m	$\left(1+\frac{1}{m}\right)^m$
1	2
10	2.59374246
100	2.704813829
1,000	2.716923932
10,000	2.718145927
100,000	2.718268237
1,000,000	2.718280469
10,000,000	2.718281693
+	↓
~	e

Formulas for Compound Interest

After t years, the balance A in an account with principal P and annual interest rate r (in decimal form) is given by the following formulas.

- **1.** For *n* compoundings per year: $A = P\left(1 + \frac{r}{n}\right)^{nt}$
- **2.** For continuous compounding: $A = Pe^{rt}$

Example 8 – Compound Interest

A total of \$12,000 is invested at an annual interest rate of 9%. Find the balance after 5 years if it is compounded

- **a.** quarterly.
- **b.** monthly.
- c. continuously.

Example 8(a) – Solution

For quarterly compounding, you have n = 4. So, in 5 years at 9%, the balance is

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

Formula for compound interest

=
$$12,000\left(1 + \frac{0.09}{4}\right)^{4(5)}$$
 Substitute for *P*, *r*, *n*, and *t*.

$$\approx$$
 \$18,726.11.

Use a calculator.

For monthly compounding, you have n = 12. So, in 5 years at 9%, the balance is

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

Formula for compound interest

$$= 12,000\left(1 + \frac{0.09}{12}\right)^{12(5)}$$

Substitute for P, r, n, and t.

$$\approx$$
 \$18,788.17.

Use a calculator.

For continuous compounding, the balance is

 $A = Pe^{rt}$ Formula for continuous compounding

= $12,000e^{0.09(5)}$ Substitute for *P*, *r*, and *t*.

≈ \$18,819.75. Use a calculator.