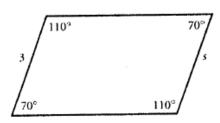

OTHER POLYGONS

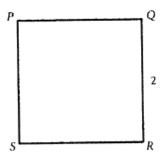
86. SPECIAL QUADRILATERALS

Rectangle


A rectangle is a **four-sided figure with four right angles.** Opposite sides are equal. Diagonals are equal.

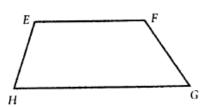
Quadrilateral ABCD above is shown to have three right angles. The fourth angle therefore also measures 90°, and ABCD is a rectangle. The perimeter of a rectangle is equal to the sum of the lengths of the four sides, which is equivalent to 2(length + width).

Parallelogram


A parallelogram has **two pairs of parallel sides.** Opposite sides are equal. Opposite angles are equal. Consecutive angles add up to 180°.

In the figure above, s is the length of the side opposite the 3, so s = 3.

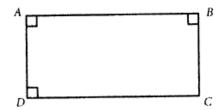
• Square


A square is a rectangle with 4 equal sides.

If *PQRS* is a square, all sides are the same length as *QR*. The perimeter of a square is equal to four times the length of one side.

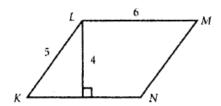
• Trapezoid

A trapezoid is a quadrilateral with one pair of parallel sides and one pair of nonparallel sides.

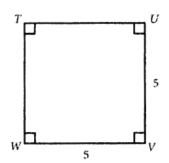


In the quadrilateral above, sides \overline{EF} and \overline{GF} are parallel, while sides \overline{EH} and \overline{FG} are not parallel. \overline{EFGH} is therefore a trapezoid.

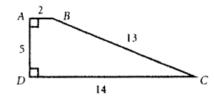
7. AREAS OF SPECIAL QUADRILATERALS


Area of Rectangle = Length × Width

The area of a 7-by-3 rectangle is $7 \times 3 = 21$.


Area of Parallelogram = Base × Height

The area of a parallelogram with a height of 4 and a base of 6 is $4 \times 6 = 24$.


Area of Square = $(Side)^2$

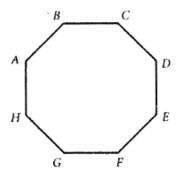
The area of a square with sides of length 5 is $5^2 = 25$.

Area of Trapezoid =
$$\left(\frac{\text{base}_1 + \text{base}_2}{2}\right) \times \text{height}$$

Think of it as the average of the bases (the two parallel sides) times the height (the length of the perpendicular altitude).

In the trapezoid *ABCD* above, you can use side \overline{AD} for the height. The average of the bases is $\frac{2+14}{2} = 8$, so the area is 5×8 , or 40.

88. INTERIOR ANGLES OF A POLYGON


The sum of the measures of the interior angles of a polygon is $(n-2) \times 180$, where n is the number of sides.

Sum of the Angles =
$$(n-2) \times 180$$
 degrees

The eight angles of an octagon, for example, add up to $(8-2) \times 180 = 1,080$.

To find **one angle of a regular polygon**, divide the sum of the angles by the number of angles (which is the same as the number of sides). The formula, therefore, is:

Interior Angle =
$$\frac{(n-2) \times 180}{n}$$

Angle A of the regular octagon above measures $\frac{1,080}{8} = 135$ degrees.