Arc Length

For a function, f(x)

$$L = \int_{a}^{b} \sqrt{1 + \left[f'(x) \right]^2} dx$$

For a polar graph, $r(\boldsymbol{\theta})$

$$L = \int_{\theta_1}^{\theta_2} \sqrt{\left[r(\theta)\right]^2 + \left[r'(\theta)\right]^2} d\theta$$

BC Only: Arc Length (Length of a Curve)

A. If the function y = f(x) is a differentiable function, then the length of the arc on [a, b] is

$$\int_a^b \sqrt{1 + [f'(x)]^2} \, dx$$

B. If the function x = f(y) is a differentiable function, then the length of the arc on [a, b] is

$$\int_{a}^{b} \sqrt{1 + [f'(y)]^2} \, dy$$

C. Parametric Arc Length: If a smooth curve is given by x(t) and y(t), then the arc length over the interval $a \le t \le b$ is

$$\int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

Arc Length of a Function:

For a function f(x) with a continuous derivative on [a, b]:

Arc Length is:
$$s = \int_a^b \sqrt{1 + \left[f'(x) \right]^2} dx$$