Formulas and Theorems

A function y = f(x) is <u>continuous</u> at x = a if

- i). f(a) exists
- ii). $\lim_{x \to a} f(x) \text{ exists}$
- iii). $\lim_{x \to a} = f(a)$

Definition of Continuity

A function **f** is **continuous** at c if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that $|x - c| < \delta$ and $|f(x) - f(c)| < \varepsilon$.

Tip: Rearrange |f(x) - f(c)| to have |(x - c)| as a factor. Since $|x - c| < \delta$ we can find an equation that relates both δ and ε together.

Prove that $f(x) = x^2 - 1$ is a continuous function.

$$|f(x) - f(c)|$$

$$= |(x^2 - 1) - (c^2 - 1)|$$

$$= |x^2 - 1 - c^2 + 1|$$

$$= |x^2 - c^2|$$

$$= |(x + c)(x - c)|$$

$$= |(x + c)| |(x - c)|$$
Since $|(x + c)| \le |2c|$

$$|f(x) - f(c)| \le |2c||(x - c)| < \varepsilon$$

So, given $\varepsilon > 0$, we can **choose** $\delta = \left| \frac{1}{2c} \right| \varepsilon > 0$ in the Definition of Continuity. So, substituting the chosen δ for |(x - c)| we get:

$$|f(x) - f(c)| \le |2c| \left(\left| \frac{1}{2c} \right| \varepsilon \right) = \varepsilon$$

Since both conditions are met, f(x) is continuous.

If a function is differentiable at point x = a, it is continuous at that point. The converse is false, in other words, continuity does <u>not</u> imply differentiability.