## \*\*\*Dominance and Comparison of Rates of Change (BC topic only)

Logarithm functions grow slower than any power function  $(x^n)$ .

Among power functions, those with higher powers grow faster than those with lower powers.

All power functions grow slower than any exponential function  $(a^x, a > 1)$ .

Among exponential functions, those with larger bases grow faster than those with smaller bases.

We say, that as  $x \to \infty$ :

1. 
$$f(x)$$
 grows faster than  $g(x)$  if  $\lim_{x\to\infty} \frac{f(x)}{g(x)} = \infty$  or if  $\lim_{x\to\infty} \frac{g(x)}{f(x)} = 0$ .

If f(x) grows faster than g(x) as  $x \to \infty$ , then g(x) grows slower than f(x) as  $x \to \infty$ .

2. 
$$f(x)$$
 and  $g(x)$  grow at the same rate as  $x \to \infty$  if  $\lim_{x \to \infty} \frac{f(x)}{g(x)} = L \neq 0$  (L is finite

and nonzero).

For example,

1. 
$$e^x$$
 grows faster than  $x^3$  as  $x \to \infty$  since  $\lim_{x \to \infty} \frac{e^x}{x^3} = \infty$ 

2. 
$$x^4$$
 grows faster than  $\ln x$  as  $x \to \infty$  since  $\lim_{x \to \infty} \frac{x^4}{\ln x} = \infty$ 

3. 
$$x^2 + 2x$$
 grows at the same rate as  $x^2$  as  $x \to \infty$  since  $\lim_{x \to \infty} \frac{x^2 + 2x}{x^2} = 1$ 

To find some of these limits as  $x \to \infty$ , you may use the graphing calculator. Make sure that an appropriate viewing window is used.