***Euler's Method (BC topic)
Euler's Method is a way of approximating points on the solution of a differential equation $\frac{dy}{dx} = f(x, y)$. The calculation uses the tangent line approximation to move from one point to the next. That is, starting with the given point (x_1, y_1) - the initial condition, the point $(x_1 + \Delta x, y_1 + f'(x_1, y_1)\Delta x)$ approximates a nearby point on the solution graph. This aproximation may then be used as the starting point to calculate a third point and so on. The accuracy of the method decreases with large values of Δx . The error increases as each successive point is used to find the next.

(x,y): given	$\frac{dy}{dx}$: given	Δx : given	$\Delta y = \frac{dy}{dx} \Delta x$	$(x + \Delta x, y + \Delta y)$
Start again				

Euler's Method

(x,y)	$\frac{dy}{dx}$	Δx	$\Delta y = \frac{dy}{dx} \Delta x$	(x,y)				