| Graphing with Derivatives | | |--|---| | Test for Increasing and Decreasing
Functions | 1. If $f'(x) > 0$, then f is increasing (slope up) \nearrow 2. If $f'(x) < 0$, then f is decreasing (slope down) \searrow 3. If $f'(x) = 0$, then f is constant (zero slope) \rightarrow | | The First Derivative Test | If f'(x) changes from - to + at c, then f has a relative minimum at (c, f(c)) If f'(x) changes from + to - at c, then f has a relative maximum at (c, f(c)) If f'(x), is + c + or - c -, then f(c) is neither | | The Second Deriviative Test
Let $f'(c)=0$, and $f''(x)$ exists, then | 1. If $f''(x) > 0$, then f has a relative minimum at $(c, f(c))$
2. If $f''(x) < 0$, then f has a relative maximum at $(c, f(c))$
3. If $f''(x) = 0$, then the test fails (See 1^{st} derivative test) | | Test for Concavity | 1. If $f''(x) > 0$ for all x , then the graph is concave up \cup 2. If $f''(x) < 0$ for all x , then the graph is concave down \cap | | Points of Inflection
Change in concavity | If $(c, f(c))$ is a point of inflection of $f(x)$, then either 1. $f''(c) = 0$ or 2. $f''(x)$ does not exist at $x = c$ |