Math 115 Exam #1 Practice Problems

For each of the following, say whether it converges or diverges and explain why.
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for all n. Therefore, since ) 517 converges (it’s a p-series with p = 2 > 1), the series ) n°_ also
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Answer: Notice that
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for all n. Therefore, since ) ] (%)n converges (it’s a geometric series with r = % < 1), the series %
also converges by the comparison test.
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Answer: Using the Root Test:
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Since the limit is less than 1, the Root Test says that the series converges absolutely.
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For what values of p does the series ) |~ 3 5 converge?
Answer: Doing a limit comparison to 531_—,,, I see that
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Therefore, the series converges if and only if the series ) lep converges. This happens when 3—p > 1,
which is to say when p < 2. So the given series converges when p < 2.

. We would like to estimate the sum of the series anx’:l ;41_1_—3 by using the sum of the first ten terms. Of

course, the exact error is the sum of all the terms from the 11th on, i.e., > o0, n++3 Show that this
error is less than 1/3000 by comparing this with the sum of 1/n% and then by estimating this latter

sum using an appropriate integral.

Answer: Notice that
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In turn, the sum on the right is less than
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so we see that the error is less than 1/3000.



6. Does the series
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converge or diverge?
Answer: Using the Ratio Test,
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Dividing numerator and denominator by n?® yields
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Since 0 < 1, the Ratio Test says that the series converges absolutely.
7. Does the series
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converge absolutely, converge conditionally, or diverge?

Answer: Notice that
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since cosine is a continuous function. Therefore, the terms
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are not going to zero, so the Divergence Test says that the series diverges.

8. Determine the radius of convergence of the series
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Answer: Using the Ratio Test,
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which is less than 1 when |x| < 1, so the radius of convergence is 1.
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Consider the sequence defined by a,, = sy Does this sequence converge and, if it does, to what

limit?

Answer: Dividing numerator and denominator by n, we have that
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so the sequence converges to —1.

Find the value of the series

n=1

Answer: [ can re-write the terms as:
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Shifting the indices of the sums down by one yields
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These are both geometric series, so I can sum them using the formula for geometric series:
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Does the series .
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converge or diverge?

Answer: Do a limit comparison to }_ %:
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Dividing numerator and denominator by n*/? yields
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Therefore, since > % =5 nl% diverges (it's a p-series with p = 1/2 < 1), the Limit Comparison

Test says that the given series also diverges.
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Does the series -
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converge or diverge?
Answer: Notice that
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for all n. Since % < 1, the series > 4 (%)n converges and so, by the comparison test, > |3+§$| also
converges.

Hence, the series il'ggﬂ converges absolutely.

for all n, so
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Does the series
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converge absolutely, converge conditionally, or diverge?

s/n}’T are decreasing and go to zero (you should check this), so the Alternating

Series Test says that the series converges.

Answer: The terms

To see that the series does not converge absolutely, it suffices to show that the series
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diverges. To see this, do a limit comparison with the divergent series > %:
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Since the limit is finite and non-zero, the limit comparison test says that the series » ﬁ diverges.

Does the series -
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converge absolutely, converge conditionally, or diverge?

Answer: Using the Ratio Test,
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Therefore, the Ratio Test says that the series diverges.
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