Integration by Substitution

B Use pattern recognition to find an indefinite integral.

B Use a change of variables to find an indefinite integral.

8 Use the General Power Rule for Integration to find an indefinite integral.
B Use a change of variables to evaluate a definite integral.

8 Evaluate a definite integral involving an even or odd function.

Pattern Recognition

In this section, you will study techniques for integrating composite functions. The
discussion is split into two parts—pattern recognition and change of variables. Both
techniques involve a w-substitution. With pattern recognition, you perform the
substitution mentally, and with change of variables, you write the substitution steps.

The role of substitution in integration is comparable to the role of the Chain Rule
in differentiation. Recall that for the differentiable functions

y=Fu) and u= g(x)

the Chain Rule states that

<L [F(el)] = F(gl)g'0)

From the definition of an antiderivative, it follows that

JF (g(x)g’(x) dx = F(g(x)) + C.

These results are summarized in the next theorem.



THEOREM 4.12 Antidifferentiation of a Composite Function

Let g be a function whose range is an interval [, and let f be a function that is

continuous on /. If g is differentiable on its domain and F is an antiderivative
of fon I, then

Jf(g(x))g’(x) dx = F(g(x)) + C.

Letting u = g(x) gives du = g’(x) dx and

Jf{u} du = F(u) + C.

Examples | and 2 show how to apply Theorem 4.13 directly, by recognizing the
presence of f(g(x)) and g’(x). Note that the composite function in the integrand has an
outside function f and an inside function g. Moreover, the derivative g’(x) is present as
a factor of the integrand.

Outside function

|
Jf(g(x))g’(x} dx = F(g(x)) + C

e

Derivative of

Inside function | |. . .
inside function




Recognizing the f(g(x))g’(x) Pattern

Find J(x3 + 1)2(2x) dx.

Solution Letting g(x) = x* + 1, you obtain
g'lx) = 2x
and

flg)) =fx* + 1) = (& + 1)%

From this, you can recognize that the integrand follows the f(g(x))g’(x) pattern. Using
the Power Rule for Integration and Theorem 4.13, you can write
flglx) g'(x)
"
1
J(.Jr2 + 1)%(2x) dx = ?(.1'2 + 1)+ C.

Try using the Chain Rule to check that the derivative of 3(x2 + 1)3 + C is the integrand
of the original integral.



Recognizing the f(g(x))g’(x) Pattern

Find JS cos 5x dx.

Solution Letting g(x) = 5x. you obtain
glx) =5

and
f(g(x)) = f(5x) = cos 5x.

From this, you can recognize that the integrand follows the f(g(x))g’(x) pattern. Using
the Cosine Rule for Integration and Theorem 4.13, you can write

F(g() g0
I— - .-’h.‘

J(cos 5x)(5) dx = sin 5x + C.

You can check this by differentiating sin 5x + C to obtain the original integrand.



Exploration

Recognizing Patterns The integrand in each of the integrals labeled (a)—(c)
fits the pattern f(g(x))g’(x). Identify the pattern and use the result to evaluate

the integral.
a. Ilﬁc(x2 + 1)*dx b. f3x2\fx3 + 1 dx c. Jseczx(tanx + 3) dx

The integrals labeled (d)—(f) are similar to (a)-(c). Show how you can multiply
and divide by a constant to evaluate these integrals.

d. J.l:{:wr2 + 1)*dx e. fxz\fxf" + 1 dx f. JZ sec? x(tan x + 3) dx

The integrands in Examples 1 and 2 fit the f(g(x))g’(x) pattern exactly—you only
had to recognize the pattern. You can extend this technique considerably with the

Constant Multiple Rule

ka (x) dx = kJ:f(x) dx.

Many integrands contain the essential part (the variable part) of g’(x) but are missing a
constant multiple. In such cases, you can multiply and divide by the necessary constant
multiple, as shown in Example 3.



EXAMPLE 3 Multiplying and Dividing by a Constant

Find the indefinite integral.

Jx(x2 + 1) dx

Solution This is similar to the integral given in Example 1, except that the integrand
is missing a factor of 2. Recognizing that 2x is the derivative of x> + 1, you can let

glx) =x+ 1
and supply the 2x as shown.
Jx(x2 + 1)dx = j(x2 + 1)? (%)(h} dx Multiply and divide by 2.
flelx)) g’(.r]
J(xz + 1)2 (2).’) dx Constant Multiple Rule
+ 1
= 2[%}] + C Integrate.
1 o
=—(x2+ 13 +C Simplify. I |
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In practice, most people would not write as many steps as are shown in Example 3.
For instance, you could evaluate the integral by simply writing
1
Jx(xﬁ +1)2dx = ;J(x'z +1)% (2) dx

iy

zl[(xz+ 1)3]+ -

2 3
=é(x2 + 1) + C.

Be sure you see that the Constant Multiple Rule applies only to constants. You
cannot multiply and divide by a variable and then move the variable outside the integral
sign. For instance,

J(xz £ 1) dx # ;—J(xz L 1P (20) dx.

After all. if it were legitimate to move variable quantities outside the integral sign, you
could move the entire integrand out and simplify the whole process. But the result
would be incorrect.



Change of Variables

With a formal change of variables, you completely rewrite the integral in terms of u
and du (or any other convenient variable). Although this procedure can involve more
written steps than the pattern recognition illustrated in Examples 1 to 3, it is useful for
complicated integrands. The change of variables technique uses the Leibniz notation for
the differential. That is, if u = g(x). then du = g’(x) dx, and the integral in Theorem
4.13 takes the form

ff(g(x))g (x) dx = ff(u) du = F(u) + C.



EXAMPLE 4 Change of Variables
Find J\.-’Zx — 1 dx.

Solution First, let u be the inner function, # = 2x — 1. Then calculate the differential
du to be du = 2 dx. Now, using «/2x — 1 = Ju and dx = du/2, substitute to obtain

— du
j\.- 2x — ldx = JJ’E (7) Integral in terms of u

I 1/2 .

=5 |u du Constant Multiple Rule
1 {32

= —( > ) + C Antiderivative in terms of u
2\3/2
1 3/2 . .

= gu =+ C Simplify.

(2){ — ])3"' 2+ C Antiderivative in terms of x

L | —



Change of Variables

« « « «[> See LarsonCalculus.com for an interactive version of this type of example.

Find [x2x — 1 dx.

Solution As in the previous example, let u = 2x — | and obtain dx = du/2.

Because the integrand contains a factor of x, you must also solve for x in terms of u, as
shown.

u—+1
u=2x—1 > x= 2 Solve for x in terms of .

Now, using substitution, you obtain

fovmrane (=)o )

= %J(HHE + u'?) du
] uﬁfz HS'{Z)
- 4(5/2 t3p) T C

= SQr - Q- PR C -

To complete the change of variables in Example 5, you solved for x in terms of u.

Sometimes this is very difficult. Fortunately, it is not always necessary, as shown in the
next example.
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Change of Variables

Find Jsin2 3x cos 3x dkx.

Solution Because sin? 3x = (sin 3x)%, you can let # = sin 3x. Then

du = (cos 3x)(3) dx.

Now, because cos 3x dx is part of the original integral, you can write

du

3 = cos 3x dx.

Substituting # and du/3 in the original integral yields

) d
Jsm2 3x cos 3xdx = Juz Tu

3
—(”T) +C
D

= ésinB‘ 3x + C.

You can check this by differentiating.

d|1l .,
— | — 5 3 —
dx[()“n .r—l—C]

(é)@](ﬂn 3x)2(cos 31)(3)

sin? 3x cos 3x

Because differentiation produces the original integrand, you know that you have obtained

the correct antiderivative.

11



The steps used for integration by substitution are summarized in the following

guidelines.

GUIDELINES FOR MAKING A CHANGE OFVARIABLES
1.

ol o

AU

Choose a substitution # = g(x). Usually, it is best to choose the inner part
of a composite function, such as a quantity raised to a power.

Compute du = g'(x) dx.

Rewrite the integral in terms of the variable u.

Find the resulting integral in terms of u.

Replace u by g(x) to obtain an antiderivative in terms of x.

Check your answers by differentiating.

So far, you have seen two techniques for applying substitution, and you will

see more techniques in the remainder of this section. Each technique differs slightly
from the others. You should remember, however, that the goal is the same with each
technique—yvou are trying to find an antiderivative of the integrand.

12



The General Power Rule for Integration

One of the most common u-substitutions involves quantities in the integrand that are
raised to a power. Because of the importance of this type of substitution, it is given a
special name—the General Power Rule for Integration. A proof of this rule follows
directly from the (simple) Power Rule for Integration, together with Theorem 4.13.

THEOREM 4.14 The General Power Rule for Integration

If g is a differentiable function of x, then

J[g(x)]"g’(x} dx = % +C, n#—1.

Equivalently, if u = g(x). then

urr+1
Ju"‘du= +C, n#+—1.
n+ 1

13



EXAMPLE 7 Substitution and the General Power Rule

ut du w5

A —_—

]

. j3(3x— 1)* dx = J(Bx— l).4(3)dr=w+ C

5
u! du uz/2
R RNy
b. J(2x+ D2 + x) dx = j(x3+ ) (2x + 1)dx=%+ c
u'? du w2/(3/2)
’ N Y ’
N Nl e R RN
2 3
u? Efif u'/(—=1)
d _—dez (.1_2)(2)—'2(_45[)(&:%_’_6-:_ !
C(1 = 2x2)? —1 1 —2x7
u? du /3
s - N - . e ""—j
e. Jcoszx sinx dx = —j(cos X)2(—sinx) dx = _(co+x) +C
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Some integrals whose integrands involve quantities raised to powers cannot be
found by the General Power Rule. Consider the two integrals

Jx[x’2 + 1)?dx and J(x2 + 1)%dx.

The substitution
u=x2+1

works in the first integral, but not in the second. In the second, the substitution fails
because the integrand lacks the factor x needed for du. Fortunately, for this particular
integral, you can expand the integrand as

2+ 1)P=x*+2x+1

and use the (simple) Power Rule to integrate each term.

Change of Variables for Definite Integrals

When using u-substitution with a definite integral, it is often convenient to determine
the limits of integration for the variable u rather than to convert the antiderivative back
to the variable x and evaluate at the original limits. This change of variables is stated
explicitly in the next theorem. The proof follows from Theorem 4.13 combined with
the Fundamental Theorem of Calculus.

THEOREM 4.15 Change of Variables for Definite Integrals

If the function # = g(x) has a continuous derivative on the closed interval
[a, b] and f is continuous on the range of g, then
g(b)

| e ac= [ s au

gla)

15



Change of Variables

I
Evaluate J x(x? + 1) dx.
0

Solution To evaluate this integral, let u = x> + 1. Then, you obtain
u=x>+1 m> du=2xdx
Before substituting, determine the new upper and lower limits of integration.

Lower Limit Upper Limit
Whenx =0, u=0>+1=1. Whenx =1, u=1>2+1=2.

Now, you can substitute to obtain

e

1 1<
]
J x(12 + ])3 dx = Ef (x2 + ]}3(21] dx [ntegration limits for x
0 {

) .— ___-"/
o A o ) T
1>
= E u? du Integration limits for u
I

- B -

Notice that you obtain the same result when you rewrite the antiderivative %[u“ﬂl} in

terms of the variable x and evaluate the definite integral at the original limits of
integration, as shown below.

2] -5
-}

15
=3 .
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Change of Variables

Evaluate the definite integral.
5

X
V2x — 1 x

Solution To evaluate this integral, let u = /2x — 1. Then, you obtain

w? =2x — 1
u>+1=2x
w? + 1
) =X
udu = dx. Differentiate each side.

Before substituting, determine the new upper and lower limits of integration.

Lower Limit Upper Limit
1 Whenx=1. u= 2 —1=1. Whenx =35, u= /10 — 1 = 3.
T Now, substitute to obtain
4 5 3
X 1/u* + 1
: o2 J,\./Qx—ldx_L;( 2 )“d”
x L
= —J (> + 1) du
2
3 3
| s _ l[“_ N u]
_1 1 2 3 4 5 213 1
I
The region before substitution has an n 2 7 3
area of %.
Figure 4.38 — %
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Geometrically, you can interpret the equation

The region before substitution h f = i J3“2+ldu
titut e =
¢ regﬁm ore substitution nas an | \.-/ﬁ | 2
area of 5.
Figure 4.38 to mean that the two different regions shown in Figures 4.38 and 4.39 have the same

area.

When evaluating definite integrals by substitution, it is possible for the upper limit
of integration of the wu-variable form to be smaller than the lower limit. When this
happens, don’t rearrange the limits. Simply evaluate as usual. For example, after
substituting # = /1 — x in the integral

1
3+ j X1 — x)' 2 dx
0

B youobtainu = 1 — 1 =0whenx =1, andu = V1 — 0 = 1 when x = 0. So, the

|—£1' " correct i-variable form of this integral is
. - 0
S S S o[ 0 e
—1-+ 1
Expanding the integrand, you can evaluate this integral as shown.
The regign after substitution has an 0 S 770 I s 16
area of 3. —2J' (? — 2u* + u) du = —2[“— -2 “—] = —2(—— +Z- —) =2
Figure 4.39 I 35 T 35 7 105
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Even function

0Odd function
Figure 4.40

Integration of Even and Odd Functions

Even with a change of variables, integration can be difficult. Occasionally, you can
simplify the evaluation of a definite integral over an interval that is symmetric about the
y-axis or about the origin by recognizing the integrand to be an even or odd function
(see Figure 4.40).

THEOREM 4.16 Integration of Even and Odd Functions

Let f be integrable on the closed interval [a, —a].

a a
1. If fis an even function, then J flx)dx =2 J flx) dx.
—a 0

2. If fis an odd function, then | f(x) dx = 0.

Proof Here is the proof of the first property. (The proof of the second property is left
to you [see Exercise 99]) Because f is even, you know that f(x) = f(—x). Using
Theorem 4.13 with the substitution # = —x produces

_ﬂﬂﬂ“=fﬂﬂ%m=—fﬂwm=ﬁk@m=£}mm_

Finally, using Theorem 4.6, you obtain
a 0 a
| = [ s [
[ [ s
0 0
QJ' flx) dx.
0

See LarsonCalculus.com for Bruce Edwards’s video of this proof. [ |
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3. Integration of an Odd Function

Evaluate the definite integral.

f(x)=sin’ x cos x + sin x cos x /2
y 7/ J' (sin®x cos x + sin x cos x) dx
/ -
N / Solution Letting f(x) = sin’x cos x + sin x cos x produces
f(—=x) = sin’(—x) cos(—x) + sin(—x) cos(—x)

—sin® x cos x — sinx cos x

a = —f).

T
n
2 So, fis an odd function, and because fis symmetric about the origin over [— /2, /2],
you can apply Theorem 4.16 to conclude that
=1 /2
J (sin® x cos x + sinx cos x) dx = 0.
—m/2
Bicfgusefls an odd function, From Figure 4.41, you can see that the two regions on either side of the y-axis have the
Fx)dx = 0. same area. However, because one lies below the x-axis and one lies above it, integration

—/2 produces a cancellation effect. (More will be said about areas below the x-axis in

Figure 4.41 Section 7.1.)



4.5 Exercises

See CalcChat.com for tutorial help and worked-out solutions to odd-numbered exercises.

Finding v and du In Exercises 1-4, complete the table by fdp Slope Field In Exercises 31 and 32, a differential equation,

identifying # and du for the integral.
Jf (g0Ng'@dx  w=gl)  du=g'x)ax
1. J(Sx2 + 1)%(16x) dx
2. j 222+ Tdx
3. J tan® x sec’x dx

4. j—"_“ixafx
ST x

Finding an Indefinite Integral In Exercises 5-26, find the
indefinite integral and check the result by differentiation.

5. J (1 + 6x)*(6) dx 6. j (2 = 9)%(2x) dx

7. J-J25 — x% (—2x) dx 8. j:”/?’ — 4x%(—8x) dx

9. J13(14 + 3)%dx 10. sz(ﬁ — )P dx
11. sz(ﬂ — 1)*dx 12. jx(sz + 4)% dx
13. j.r\/r? + 2dt 14. jr’x/zz" + 3dt
15. Jj){ 31— xTdx 16. Jug\/u-"‘ + 2du
17, | ——d s |2

o= TSR
x2 62
19. jmdx 20. jmdx

21 22

x X3
.| dx . | ——=dx
J\/lfx2 J\/]er"

S e PP |

s [ x
25, J-ﬁdx 26.[ i/5?0'1\:

Differential Equation
differential equation.

In Exercises 27-30, solve the

dy 4x dy 10x2
P L T
dx J16 — x? de /1 + 2
v + y —
29 & xt1 g, x4
dx  (xF + 2x — 3)° dx X7 —8x+1

a point, and a slope field are given. A slope field consists of line
segments with slopes given by the differential equation. These
line segments give a visual perspective of the directions of the
solutions of the differential equation. (a) Sketch two
approximate solutions of the differential equation on the slope
field, one of which passes through the given point. (To print an
enlarged copy of the graph, go to MathGraphs.com.) (b) Use
integration to find the particular solution of the
differential equation and use a graphing utility to graph the
solution. Compare the result with the sketches in part (a).

d.
32— a—=

dy
32 2 2 — 2
2 i = 1)

dx
(2.2) (1,0)
¥ ¥
— N3t — | 24—
N R A | S R
—\NANNT S . | 4 - —
— NN N T S — | + — 11
— NN Nt = } - . ! x
— NN N TS = -2 / -+ — 1 2
F——+ t } x | + - — |
-2 NNt S 2 | o
— _I -+ / - | _2 .

Finding an Indefinite Integral In Exercises 33—42, find the
indefinite integral.

33. jw sin 7rx dx 34, jsin Ax dx

. 2 X
36. jcsc (2) dx

38. Jx sin x? dx

35, f cos 8x dx

1 1
37. | —Scos—
7 Jﬁzcosedﬁ

39. jsiancoslxa!x 40. J'\/tanxseczxdx

2 .
41. f ST 42, j—s'"f dx
cot”’ x cos” X

Finding an Equation In Exercises 43-46, find an equation
for the function f that has the given derivative and whose graph
passes through the given point.

Derivative Point
43. F(x) = fsing (0. 6)
44, f/(x) = sec?(2x) (gz)
45, F(x) = 2x(4> — 10 (2, 10)
46. f(x) = — /8 — 2 (2.7
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Change of Variables In Exercises 47-54, find the indefinite
integral by the method shown in Example 5.

47. jx.fx+6dx 48. jx./3x—4dx

49. sz\/ﬁdx 50. j(x+1)ﬂdx

S S NN s | BEEL 4
/=1 )+ 4

—X
53, |———————————dx
j-(x+1)f Jx+1
54. jt Jr+10dt

Evaluating a Definite Integral In Exercises 55-62,
evaluate the definite integral. Use a graphing utility to verify
your result.

1 1
55. j x(x? + 1) dx 56. j F(2x* + 1)2dx
0

2 1
57. j 22 yx + ldx 58. j X1 — x?dx
1 0

4 2
1 x
59. ————dx 60. ———dx
j‘;\/2x+l J;; J1+ 27
9 s
61 j L & e j X
P Va1 VAP NG
Differential Equation In Exercises 63 and 64, the graph of
a function f is shown. Use the differential equation and the
given point to find an equation of the function.

L dy X dy —48
, = 2 +1)2 L =
63. o 18x7(2x 1) 64 &~ Bx+ o)
¥y ¥
6
f 5
4
(-1,3)
T e e
b x —-6-5-4-3-2-1 1 2
—4-3-2 r i _2i

Finding the Area of a Region In Exercises 65-68, find the
arca of the region. Use a graphing utility to verify your result.

7 6
65. j xIx + ldx 66. j 2 ¥x+ 2dx
o -2

y ¥y

/4
68. j csc 2x cot 2x dx
/12

2ur/3 N
67. j secz(f) dx
/2 2

.,

v

Even and Odd Functions In Exercises 69-72, evaluate
the integral using the properties of even and odd functions as
an aid.

2 2
69. j x2x? + 1) dx 70. j x(x? + 17 dx

2 -2

/2 /2
71. j sin” x cos x dx 72, j sin x cos x dx
/2 /2

73. Using an Even Function Use [#x2dx = £ to evaluate
each definite integral without using the Fundamental Theorem
of Calculus.

0
(a]J x2dx
-4
4

(c) j —x2dx
0

74. Using Symmetry Use the symmetry of the graphs of the
sine and cosine functions as an aid in evaluating each definite
integral.

4
(b) J x2dx
-4

0
(d)j 3x? dx
—4

/4 Pz
(a) j sin x dx (b) cos x dx
—m/4 —m/4
/2 /2
(c) J cos x dx (d) sin x cos x dx
—a/2 —af2

Even and Odd Functions In Exercises 75 and 76, write the
integral as the sum of the integral of an odd function and the
integral of an even function. Use this simplification to evaluate
the integral.

/2

3
75. j (X +4x> = 3x— 6)dx 76 J (sin 4x + cos 4x) dx
-3

—a/2

WRITING ABOUT CONCEPTS
77. Using Substitution Describe why

jx(ﬁ — x2)Pdx # ju3 du

where u = 5 — x2.

78. Analyzing the Integrand Without integrating,
explain why

J_ x(x? + 1) dx = 0.

-2
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WRITING ABOUT CONCEPTS (continued) s o84 Electriclty e ocoevccorceocconees

79. Choosing an Integral You are asked to find one of
the integrals. Which one would you choose? Explain.

(a) j.fﬁ + 1dx or sz./x3 + 1dx

The oscillating current in an electrical circuit is
I = 2sin(6071) + cos(12071)

where [ is measured in amperes and f is measured in seconds.
Find the average current for each time interval.

(b) jMn (3x) sec’(3x) dx or Jtan (3x) dx (@0=t=< é
80. Comparing Methods Find the indefinite integral in ) 0<t< 1
two ways. Explain any difference in the forms of the - T 240
answers. 1
c)0=t= 0
(a) j(ZI — 1)2dx (b) j[anxseczxdx

s 8 8 & 8 & 8B S B S 8 S ss
81. Depreciation The rate of depreciation dV/dr of a machine

is inversely proportional (o the square of (1 + 1), where V is Probability In Exercises 85 and 86, the function

the value of the machine t years after it was purchased. The FE) =kl —x)", 0=x=1

initial value of the machine was $500,000, and its value

decreased $100,000 in the first year. Estimate its value after where n > 0, > 0, and k is a constant, can be used to repre-
4 years. sent various probability distributions. If k is chosen such that

_ i
=\ j flx)de =1
82. | HOW DOYOU SEE IT? The graph shows the o

flow rate of water at a pumping station for one day.
then the probability that x will fall between a and b

R W=a=sbz=1is
é ‘5‘ 70 "
Z 60 P ,= dx.
5-E T b L f(x)dx.
SE \v/ .
b % B 85. The probability that a person will remember between 100a%
k= ?En - and 1005 % of material learned in an experiment is
‘E% ‘E 10 ] 15
Y A A e e M s Pop=| Jxv1-xda
2 4 6 8 10 12 14 16 18 20 22 24 a
Hour (0 ¢ midnight) where x represents the proportion remembered. (See figure.)
(a) Approximate the maximum flow rate at the pumping y
station. At what time does this occur?
L5+
(b) Explain how you can find the amount of water used P
during the day. T a,‘b
(c) Approximate the two-hour period when the least Lo
amount of water is used. Explain your reasoning. T
0.5+
83. Sales The sales S (in thousands of units) of a seasonal >
product are given by the model @ bos 1.0 1.5
ot (a) For a randomly chosen individual, what is the probability
§=74.50 + 4375 Sin =~ that he or she will recall between 50% and 75% of the
material?

where f is the time in months, with f = 1 corresponding to

January. Find the average sales for each time period (b) What is the median percent recall? That is, for what value

of b is it true that the probability of recalling O to b is 0.57
(a) The first quarter (0 < t < 3)

(b) The second quarter (3 <t < 6)
(c) The entire year (0 = ¢ = 12)
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86.

FF’ 87.

88,

89.

90.

The probability that ore samples taken from a region contain
between 100a% and 1005 % iron is

b
1155 N
Pop= j %) (1 — x)¥ 2 dx

where x represents the proportion of iron. (See figure.) What is
the probability that a sample will contain between

(a) 0% and 25% iron?  (b) 50% and 100% iron?

a b || 2
Graphical Analysis Consider the functions fand g, where

f(x) = 6sinxcos’x and g(t) = jf(x) dx.
0

(a) Use a graphing utility to graph fand g in the same viewing
window.

(b) Explain why g is nonnegative.

(c) Identify the points on the graph of g that correspond to the
extrema of f.

(d) Does each of the zeros of f correspond to an extremum of
g7 Explain.

(e) Consider the function

hit) = J ; [lx) dx.

Use a graphing utility to graph h. What is the relationship
between g and h? Verify your conjecture.

Finding a Limit Using a Definite Integral Find
lim 2 sin(i7r/n)
n— too n

by evaluating an appropriate definite integral over the interval
[0, 1].

Rewriting Integrals

1 1
(a) Show thatj (1 —xPdx= j F(1 - x)Pdx.
o o

1 1
(b) Show thatj (1 — x)Pdx = J xb(1 — x)? dx.
0 o

Rewriting Integrals
/2 /2
(a) Show that J sin® x dx = j cos? x dx.
[ 0

a2 /2
(b) Show that j sin” xdx = j cos" xdx, where n is a
i 0

positive integer.

True

or False? In Exercises 91-96, determine whether the

statement is true or false. If it is false, explain why or give an
example that shows it is false.

91.

92.

93.

94.

95.

96.

97.

98.

99,

j(2x+ 2der=52x+ 1P + C
jx(xz + Ddr =223 +x) + €

10 10
j (ax3+bx3+cx+d)d.x=2j (bx? + d) dx
10 0

b b+
j sinxdx:j sin x dx
a a

4jsinxcosxdx =-—cos2x + C
jsin22xcoshdx =L+ €

Rewriting Integrals Assume that f is continuous
everywhere and that ¢ is a constant. Show that

J:f(x) dx = cff(cx) dx.

Integration and Differentiation

(a) Verify thatsinu —ucosu + C = J w sin u du.

N
a2t

(b) Use part (a) to show that j sin/x dx = 2.

0
Proof Complete the proof of Theorem 4.16.

100. Rewriting Integrals Show that if fis continuous on the
entire real number line, then
b b+
j flx + h)dx = fix) dx.
a ath
PUTNAM EXAM CHALLENGE
101. If ay, a,, . . ., a, are real numbers satisfying
G dy 4 B,
1 2 n+1
show that the equation
ay+ ax +axt+ -+ gt =
has at least one real root.
102. Find all the continuous positive functions f(x), for
0 = x = 1. such that
1
fx)de=1
0
1
fx)xdy =
0

These problems were composed by the Committes on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

0
where « is a given real number.
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Answers

Section 4.5 (page 301)

jf(g(x))g’(x) dx u = glx) du = g'(x)dx
1. f(sz + 1)¥(16x) dx 8x2+ 1 16x dx
3. jtanzxseczxdx tan x sec? x dx
Si1+6xf+C 3251+ C
9. Jt 3P +C L 1P+ C
1B+ +C 15 B0 -+
17. 1/[4(1 —x)]+C 19 —1/31 + )]+ C
2. - T-2+C 23 -1 +1/p*+cC
25, I+ € 2.2 —4/16 -2+ C
29. —1/[2(x2+ 2x = 3]+ C

. (a) Answers will vary.

. Ttan?x + Cordsec?x + C,
5. flx) = (422 — 10)° — 8
L2+ 6)2 —Ax + 6)V2 + C=3(x + 6)2x —4) + C
=B —xpr -t -3+ -+ 0=

®) y =504 -2 +2

Sample answer: 2

-2

. —cos(mx) + C
1 1.
2 fcos 8rdx = gj(cos 8x)(8) dx = —sin8x + C

. —sin(1/6) + C
. 4sin?2x + Cor —}cos®2x + C, or —gcos 4x + C,

8

43. f(x) = 2 cos(x/2) + 4

—=(1 = 2P(15x2 + 12x + 8) + C

89.

91

95.

15‘3
.2j (4x2 — 6) dx = 36
0

AR — 12 2 dax — 12 — 62 - )] + € =

(V2x = 1/15)(3x2 + 2x — 13) + C

L—x—1 -2/ %1+ Cor—(x+2/x+1) + C
L0 ST 12-82 9.2 e6li

L) =028 + 1P +3
72

65.1200/28  67. 2(/3 — 1)

6 128 64
3

i B@wd OF ©-F @

. Ifu=35—x%the du = —2x dxand

Tx(5 — x2P dx = —3[(5 — x)(—2x) dx = —3[u du.

. (a) jxg JxX 4+ 1dx  (b) jtan(?ax) sec? (3x) dx

. $340,000
. (a) 102.532 thousand units  (b) 102.352 thousand units

(c) 74.5 thousand units

- (@) Pysoo7s =353% (b) b=58.6%
(@ 2 (b) g is nonnegative, because

the graph of fis positive
at the beginning and
generally has more
positive sections than
-4 negative ones.
(c) The points on g that correspond to the extrema of f are
points of inflection of g.
(d) No, some zeros of f, such as x = /2, do not correspond
to extrema of g. The graph of g continues to increase after
x = /2, because f remains above the x-axis.

(&) 2

Ay

I

The graph of h is that of g
shifted 2 units downward.

FANAN
NS

-4

(a) and (b) Proofs

o

False. j (2x+ 1Pdx =12+ 17+ C 93 True

True 97-99. Proofs 101. Putnam Problem A1, 1958
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