7.2 Integration by
Substitution

Integrating the chain rule leads to the method of substitution.

The method of integration by substitution is based on the chain rule for.
differentiation. If F and g are differentiable functions, the chain rule tells. us.
that (Fe g)(x)= F'(g(x))g'(x); that is, F(g(x)) is an antiderivative of
F'(g(x))g’(x). In indefinite integral notation, we have

[F(g)g(x)ax=F(g(x)) + C.

As in differentiation, it is convenient to introduce an intermediate variable
u = g(x); then the preceding formula becomes

[Fuy % ax= Fuy+ .
If we write f(u) for F'(u), so that [f(u)du = F(u) + C, we obtain, the formula
[ fu) Sdx= [ fu)du. (1)

This formula is easy to remember, since one may “cancel the dx’s.”

To apply the method of substitution one must find in a given integrand:
an expression u = g(x) whose derivative du/dx = g'(x) also occurs: in the
integrand.



Example 1

Solution

Example 2

Solution

Find f 2xyx2 + 1 dx and check the answer by differentiation.
None of the rules in Section 7.1 apply to this integral, so we try integration by

substitution. Noticing that 2x, the derivative of x? + I, ocecurs in the inte-
grand, we are led to write u = x? + 1; then we have

J-2x\/x2+ ld-x=f1fx2+l -2'xdx-=f\/§(%)dx.

By formula (1), the last integral equals [Vu du = [u'/%du =2u*/? + C. At this
point we substitute x* + 1 for u, which gives

fz.xw}xz +1dx=3(x*+ I)m+ C.

Checking our answer by differentiating has educational as well as insur-

ance value, since it will show how the chain rule produces the integrand we

started with:
d 2,2 3/2 _2. 3,2 12d . 2 T2

a[§(x+1) +C]—3 SR T E ) =[x+ 1 2x,
as it should be. A

Sometimes the derivative of the intermediate variable is “hidden” in the
integrand. If we are clever, however, we can still use the method of substitu-

tion, as the next example shows.

Find fcoszx sin x dx.

We are tempted to make the substitution u = cosx, but du/dx is then —sinx

rather than sinx. No matter—we can rewrite the integral as
f( — cos’x)( —sinx) dx.
Setting u = cosx, we have

- 2 du —{ .2 __"3
f u——d dx—f udu= 3-I-C,
SO

J.coszx sinxdx= — %0053)5 + C.

You may check this by differentiating. A



Example 3 Find f 1 th dx.
e

Solution We cannot just let u =1+ ¢**, because du/dx = 2e** # ¢*; but we may
recognize that e?* =(e*)* and remember that the derivative of e* is e™.
Making the substitution u = e* and du/dx = e*, we have

f I-ixez" dx=f o Ee")z -e* dx

i = i

=tan~'u+ C=tan"'(e*) + C.

Again you should check this by differentiation. A

We may summarize the method of substitution as developed so far (see Fig.
7.2.1).

Integration by Substitution

To integrate a function which involves an intermediate variable u and its
derivative du /dx, write the integrand in the form f(u)(du/dx), incorpo-
rating constant factors as required in f(x). Then apply the formula

ff(u)%dx=ff(u)du.

Finally, evaluate [f(x)du if you can; then substitute for u its expression
in terms of x.

f {expression in i) - (derivative of i) ey = f {expression in ) du
“ VRN J
YT
. tt appears here the derivative
Figure 7.2.1. How to spot u as a function of t appears
in a substitution problem. us 4 fuctor




Example 4 Find (a) f x%sin(x%) dx, (b) f sin 2. dx.

Solution (a) We observe that the factor x? is, apart from a factor of 3, the derivative of
x>, Substitute u = x°, s0 du/dx = 3x* and x% = ldu/a'x. Thus

fx sin(x”) dx = f 1 du . Sinudx= -L (smu) d_x
= ~3—fsinudu= - %cosu + C.
Hence [x’sin(x*)dx = — Lcos(x?) + C.
(b) Substitute u = 2x, so du/dx = 2. Then

fsiandxmj%(sian)de— fsmu—

sinudu= — lca:n»su:+ C.

_ 1
T2 2
Thus
fsin2xd.x= — —;—cos2x + C. A



2
Example 5 Evaluate: (a d dx, (b __dt Hint: Complete the square in
° @[50 g ! P !

the denominator], and (c) fsinzzx cos 2x dx.

Solution (a) Set u = x’ + 5; du/dx = 3x>. Then
x? 1 2 1 11 du
= —— =- | = &2/
fx3+5dx f3(x3+5)3xdx 3fu dx

=1 fau_1 = Lig)x3
3 ) 3ln|u[+C 3111|x + 5|+ C.

(b) Completing the square (see Section R.1), we find
=61+ 10=(>—6r+9) -9+ 10

=(t=3)7+1
We set u =1 — 3; du/dt = 1. Then

dt di 1 du
= = | —— S di
fr2-6r+10 fl+(r—-3)2 J-l+u2 dt

=f L du=tan~'u+ C,

1+ u?
S0
dt =1
—_— =tan” (r— 3N+ C.
ft2—61+10 ( )

(c) We first substitute ¥ = 2x, as in Example 4(b). Since du/dx = 2,

fsin22x cos 2x dx=fsin2u cosud A g =1 (cin% cosu du.
2 dx 2



At this point, we notice that another substitution is appropriate: we set
s =sinu and ds/du = cosu. Then

1 1 = .l. Zﬁ = l 2
Efsmzucosudu— 5 fs % du 5 Is ds

1.1 s
=5+ C="+C.
2 3 6
Now we must put our answer in terms of x. Since s =sinu and u = 2x, we

have

3 .3 -3
fsin22x(:052xdx= %— +C= SHITu +C = 311162.x + C.

You should check this formula by differentiating.

You may have noticed that we could have done this problem in one step
by substituting u = sin 2x in the beginning. We did the problem the long way
to show that you can solve an integration problem even if you do not see
everything at once. A



Two simple substitutions are so useful that they are worth noting explicitly.
We have already used them in the preceding examples. The first is the shifting
rule, obtained by the substitution # = x + a, where a is a constant. Here
du/dx =1.

Shifting Rule

To evaluate j f(x + a)dx, first evaluate f f(u) du, then substitute x + a
for u:

ff(x +a)dx= F(x + a)+ C, where F(u) =jf(u)du.

The second rule is the scaling rule, obtained by substituting u = bx, where b is
a constant. Here du/dx = b. The substitution corresponds to a change of scale
on the x axis.

Scaling Rule
To evaluate f f(bx)dx, evaluate f f(u)du, divide by b and substitute bx

for u:

f f(bx)dx= %F(bx} +C,  where F(u) = f f(u) du.

Example 6 Find (a) j sec’(x + T)dx and (b) j cos 10x dx.
Solution (a) Since fsec’udu = tanu + C, the shifting rule gives
f sec’(x + T)dx= tan(x + 7) + C.

(b) Since [cosudu = sinu + C, the scaling rule gives
fcos 10x dx= {5sin{10x) + C. A



Example 7

Solution

You do not need to memorize the shifting and scaling rules as such; however,
the underlying substitutions are so common that you should learn to use them
rapidly and accurately.

To conclude this section, we shall introduce a useful device called
differential notation, which makes the substitution process more mechanical. In
particular, this notation helps keep track of the constant factors which must be
distributed between the f(u) and du/dx parts of the integrand. We illustrate
the device with an example before explaining why it works.

Fmdf x1+2
(x + I{]x)

We wish to substitute # = x° + 10x; note that du/dx = 5x* + 10. Pretending
that du/dx is a fraction, we may “solve for dx,” writing dx = du/(5x* + 10).
Now we substitute u for x> + 10x and du/(5x* + 10) for dx in our integral to
obtain

J‘ x*+2 dx=fx4+2 du =f x*+2 du _ 1 du
(x5+10x)5 w  S5x*+10 5(x*+2) o 5 S

Notice that the (x* + 2)’s cancelled, leaving us an integral in # which we can
evaluate:

1faw 17 1, -4 = 1

5) 5( i )+C 20M4+C'.
Substituting x° + 10x for u gives

fit--"z—dx=——l-—+C.A

(x* + 10x)° 20(x* + 10x)*



Although du /dx is not really a fraction, we can still justify “solving for dx”
when we integrate by substitution. Suppose that we are trying to integrate
[h(x)dx by substituting u = g(x). Solving du /dx = g'(x) for dx amounts to
replacing dx by du/g'(x) and hence writing

h(x}
f h(x)dx= f 7o )
Now suppose that we can express A(x)/g'(x) in terms of u, ie., h(x)/g'(x)
= f(u) for some function f. Then we are saying that h(x)= f(u)g'(x) =
f(g(x))g'(x), and equation (2) just says

[ f(ge)g (x)dx= [ fuyan

which is the form of integration by substitution we have been using all along.

€ "")
dx.
2
Solution Letu=1/x; du/dx= —1/x* and dx = — x?du, so

f(é)e'fxdpf(#)e"(—xldup - [e“du=—e+ C

and therefore

f(—l—z)e'f"dx= —e'*+ C. A

X

Example 8 Find f (



Integration by Substitution
(Differential Notation)

To integrate fh(x)dx by substitution:

Choose a new variable u = g(x).

Differentiate to get du/dx = g'(x) and then solve for dx.

Replace dx in the integral by the expression found in step 2.

Try to express the new integrand completely in terms of , eliminating
x. (If you cannot, try another substitution or another method.)
Evaluate the new integral [f(u)du (if you can).

Express the result in terms of x.

7. Check by differentiating.

e

o th

10




2
Example 9 (a) Calculate the following integrals: (a) f x”+2x dx,

Solution

:Ux3 +3x2+1

(b)fcosx[cos(smx)]dx and (¢ )f(—““"l”)dx.

(@) Letu = x* + 3x2 + 1; du/dx = 3x* + 6x, so dx = du/(3x* + 6x) and

j‘ x*+2x _ (1l xX+2x g

g/m— 3u 3x*+6x
S O U B BV
3f3\{;a'u 3 3 + C.

Thus

[ X2 g los e ppnic
Y3+ 3x2+ 1 .

(b) Let u = sinx; du/dx = cosx, dx = du/cos x, so

fcosx[cos(sin.x)]dx=fcosx[cos(sinx)1 d

COsS X

= fcosudu= sinu + C,
and therefore
fcosx[cos(sinx)] dx=sin(sinx) + C.

(c)Letu=1+1Inx; du/dx =1/x, dx = xdu, so

f——w——~'1 +xlnx dx=f Vithx +xln.x (x du) =jul/2du= %u”z + C,

and therefore

f—“l +xlnx dx= %(1 +Inx)*+ C. A

11



Exercises for Section 7.2

Evaluate each of the integrals in Exercises 1-6 by
making the indicated substitution, and check your an-
swers by differentiating.

1.

f2x(x2 +4P2dx; u=x*+4.

2. f(x+ I(x242x — 4)"4dx; u= x>+ 2x — 4.

3

4'J‘l+x

5.

f 2y+l dy;x=ys+4y—l.

(P +4y -
dx; u = x2,

J sec’) dﬁ; u=tanf.

6. ftanxdx; U = COSX.

Evaluate each of the integrals in Exercises 7-22 by the
method of substitution, and check your answer by
differentiating.

7 J‘ (x + Deos(x? + 2x)dx

8.

18.

19.
20.

9.f L.
yx*+2
X

f usin(u®) du

v

{173
N
(*7+1)

X172
—_——dx
I (2 +2)

. f 2r sin(rHcos™ (%) dr
. feSi“ *cos x dx

3

flixsdx

dx
=

) f sin(f + 4)do

f —13 sini dx

x X

f Gxt + D(x° + x)1%dx
j(l + coss)ys + sins ds

2 )dr

2 f( t+2t‘+

22J-Jc+4

Evaluate the indefinite integrals in Exercises 23-36.

23. INIE+ 1 d.

24, f N ESW )
25. fcos’ﬂdﬂ. [Hint: Use cos?8 + sin’ = 1.]
26. fcotxdx.

dx

7. .
2 fxlnx
dx

28, | ———.

In(x*)

29. fﬂ — x7 dx. [Hint: Let x = 2sinu.]
30. jsinzx dx. (Use cos2x = 1 — 2sin’x.)

cosé
31, 1 +siné

32. f secx(e™* + 1) dx.
f sin(In r) &

t

25
34. €
I 1+ e*

IW

33.

35, dx.
X2

1 1 3

3

=8

37. Compute [sinx cosx dx by each of the following
three methods: (a) Substitute u = sin x, (b) substi-
tute u=cosx, (c) use the identity sin2x =
2sin x cos x. Show that the three answers you get

are really the same.

38. Compute [e®dx, where a is constant, by each
of the following substitutions: (a) u = ax; (b)
1 = e*. Show that you get the same answer either

way.

*39. For which values of m and »n can [sin"x cos"x dx
be evaluated by using a substitution ¥ =sinx or

u = cosx and the identity cos?x + sin%x = 1?

*40. For which values of r can [tan’x dx be evaluated

by the substitution suggested in Exercise 397

12



7.3

Example 1

Solution

Changing Variables
in the Definite Integral

When you change variables in a definite integral, you must keep track of the
endpoints.

‘We have just learned how to evaluate many indefinite integrals by the method
of substitution. Using the fundamental theorem of calculus, we can use this
knowledge to evaluate definite integrals as well.

Find [ 2 +3 dx.
0
Substitute u = x + 3, du = dx. Then
fﬁx+3 a'x=f\ﬁ; du= %u3/2+ C= %(x+3)3/2+ C.

By the fundamental theorem of calculus,

f24x+3 dx =2 (x +3)/?
0

To check this result we observe that, on the interval [0,2], yx + 3 lies between
V3 (= 1.73) and V5 (=2 2.24), so the integral must lie between 23 (& 3.46) and
2y/5 (=2 4.47). (This check actually enabled the authors to spot an error in their
first attempted solution of this problem.) &

P2 s
=§(5/a-3/)~3.99.
0

Notice that we must express the indefinite integral in terms of x before
plugging in the endpoints 0 and 2, since they refer to values of x. It is possible,
however, to evaluate the definite integral directly in the u variable—provided
that we change the endpoints. We offer an example before stating the general
procedure.

, 4
Example 2 Fmdf X dx.

114+ x*

Solution Substitute u = x%, du = 2xdx, that is, xdx = du/2. As x runs from 1 to 4,

u = x? runs from 1 to 16, so we have

f4 x dx=f|6 x__du_1 (% du
11+ x* 1 1+x*2x 24 1+ u?

16

%tan"u —é—(tan“'lﬁutan"i)m{li’rﬁl. A

1

13



In general, suppose that we have an integral of the form [%f(g(x))g'(x)dx. If
F'(u) = f(u), then F(g(x)) is an antiderivative of f(g(x))g'(x); by the
fundamental theorem of calculus, we have

[ /(e (x)g (x)dx= F(5(b)) - F(5().
However, the right-hand side is equal to [ fffj} f(u)du, so we have the formula
[ Faeg (=[5 f(u)

Notice that g(a) and g(b) are the values of u = g(x) when x=a and b,
respectively. Thus we can evaluate an integral [2h(x)dx by writing h(x) as

f(g(x))g'(x) and using the formula
[ ry = [ 50

Example 3 Evaluate J{;W “cos 26 d8.

Solution Let u =26; df =1 du; u =0 when 8 =0, u = 7/2 when 8§ = 7 /4. Thus

m/2 1

/4 _1 (=2 _1g 1 (n® _sno) =1
L cos?.ﬂdf?—zfo cosudu 2smuO 2(31112 sm(}) 2.‘

14



Definite Integral by Substitution
Given an integral f bh(x) dx and a new variable u = g(x):
a
1. Substitute du/g’(x) for dx and then try to express the integrand

h(x)/g'(x) in terms of u.
2. Change the endpoints @ and b to g(a) and g(b), the corresponding

values of u.
Then
b b)
h(xydx= [ ¥ fu)du,
[RICESS (O

where f(1) = h(x)/(du/dx). Since h(x) = f(g(x))g'(x), this can be writ-
ten as

b / - [&®
fa f(8(x))g () dx= L i.) f(w)du.

Example 4 Evaluate j;s T ; T
x x

Solution Seeing that the denominator can be written in terms of x°, we try u = x7,
dx=du/(2x); u=1 when x = 1 and u = 25 when x = 5. Thus

5 x 1 (% du
dx=1 (P__du
—I; x*+10x2+ 25 2~£ u® + 10u + 25
Now we notice that the denominator is (u + 5)%, so we set v = u + 5, du = dv;
v =6 when u =1, v = 30 when u = 25. Therefore

lfﬁL =1 0av _ l(_ l)
200 4+ 10u+25 2J o2 2\ 0
-1, 1 _ 1
STt
If you see the substitution © = x* + 5 right away, you can do the problem in
one step instead of two. A

15




Example S

Solution

Example 6

Solution

Example 7

Solution

Find J‘ﬂ/“(coszﬂ — sin’f)db.
0

It is not obvious what substitution is appropriate here, so a little trial and error
is called for. If we remember the trigonometric identity cos28 = cosd — sin’,

we can proceed easily:

ijd(mszﬁ —sin’f ) df = Lﬂﬂcos 20df = Lwﬂcow % (u=20)

w/2= 1—0

=1
2 27

sin u
2

0
(See Exercise 32 for another method.) A

1 ?X

Let u=1+e*; du=e*dx, dc=du/e*; u=1+e"=2 when x=0 and
u=1+ e when x = 1. Thus

1 px _ l+el _
j.;1+exdx_£ ua‘u Inu

l+e

=ln(1+e)~ln2=ln(l—'§—e).‘

2

Substitution does not always work. We can always make a substitution, but
sometimes it leads nowhere.

dx
1+ x*

If u=x? du/dx=2x and dx = du/2x, so

vl vt
o 1+x* Jo 14u® 2x
We must solve u = x? for x; since x > 0, we get x =u, so
J‘ 2 dx _ 4 du
o 1+ x* Jo 2u (1 + u?)
Unfortunately, we do not know how to evaluate the integral in u, so all we
have done is to equate two unknown quantities. A

2 . .
What does the integral f become if you substitute u = x2?
0

16



As in Example 7, after a substitution, the integral [f(u)du might still be
something we do not know how to evaluate. In that case it may be necessary
to make another substitution or use a completely different method. There is an
infinite choice of substitutions available in any given situation. It takes
practice to learn to choose one that works,

In general, integration is a trial-and-error process that involves a certain
amount of educated guessing. What is more, the antiderivatives of such
innocent-looking functions as

1 and !

V(1 = x?)(1 - 2x?) V3 — sin’x

cannot be expressed in any way as algebraic combinations and compositions
of polynomials, trigonometric functions, or exponential functions. (The proof
of a statement like this is not elementary; it belongs to a subject known as
“differential algebra”.) Despite these difficulties, you can learn to integrate
many functions, but the learning process is slower than for differentiation, and
practice 1s more important than ever.

Since integration is harder than differentiation, one often uses tables of
integrals. A short table is available on the endpapers of this book, and
extensive books of tables are on the market. (Two of the most popular are
Burington’s and the CRC tables, both of which contain a great deal of
mathematical data in addition to the integrals.) Using these tables requires a
knowledge of the basic integration techniques, though, and that is why you
still need to learn them.

17



3 dx . .
Example 8 Evaluate using the tables of integrals.
J; xyl + x
Solution We search the tables for a form similar to this and find number 49 with a = 1,

b= 1. Thus

J‘ =In| —— i+x-1 + C.

xyl + x yi+x +1

Hence

f x o B cml |21

I xyT+ x \f_+1 J"+1 3 2 +1
| 2D 1(1+3¢§).A
32 - 1) 3




Exercises for Section 7.3

Evaluate the definite integrals in Exercises 1-22.

1. f_'im dx

2. '[:rf_‘l

. J;zxmdx

. folrﬁa‘t
.£4(x+1){x2+2x+l)5/4dx
flzi‘(”xm dx

3 3x
f — 2 dx
L (x*+5)
8. j'zﬁ_l___ di
T P +3t+3
. J-!x,e("g)dx
0

10 [1—_ dx
Jt;l+ezx

11 f "/Sin(30 + 7)db
0

()

~

Lh

=)

=~

=]

12. {"sin(0/2 + w/4)db

j; (0/2+ 7/4)

13. f"ﬁ 5 cos?x sin x dx.
waqrf2

14, f /2 cscly
o

/4 coty +2cot y + 1

dy.

15. f 7y sin(x?) dx.
0
2

T x
16. - dx.
j.; x> +1

w4
17. -L/s tan 8db.

19.

2

=]

21.

22.

23.

24.

25.

26.

. fwﬂcotﬁ dh.

/4
Lw/ %in x cosx dx.

. fw/ In(sin x) + (x cot x)](sin x)* dx.
1

3
f 3x+x=1 gy (simplify first).
1 x4 1
2In(x*) + 1
[,
1

xZ

Using the result f "/ 25in2x dx = = /4 (See Exer-
0
cise 57, Section 7.1), compute each of the fol-
lowing integrals: (a) fwsinz(x /2)dx;
o

(b) f jzsinz(x — /2)dx; (c) L /4 c0s¥(2x) dx.

(a) By combining the shifting and scaling rules,
find a formula for [f(ax + b)dx.
. 3 dx
b) Find e
® 2 4x?+ 12x+9
denominator.]
What happens in the integral

[Hint: Factor the

j, (x%+ 3x) i
0

PP +3x7+ 1

if you make the substitution u = x* + 3x% + 1?
What becomes of the integral f ™ eostx dx if
0

you make the substitution u = cos x?

Evaluate the integrals in Exercises 27-30 using the

tables.

27.

29.

28 J’2_\‘x_ldx

- ~
3yx?—2

30.f2 = dx

fl dx
0 3x2+2x+1

J(‘]! dx
\f3xi +2x+1

19
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32.

33

34

Given two functions f and g, define a function A
by

h(x) =L]f(x - Ng(d)dt.
Show that
R = [* g(x =D

Give another solution to Example 5 by writing
cos’f — sin’f = (cos # — sind)(cosd + sin?) and
using the substitution u = cos# + sin#.

Find the area under the graph of the function
y=(x+1/(x*+2x+2)*? from x=0 to
x=1

The curve x*/a* + y*/b* = 1, where a and b are
positive, describes an ellipse (Fig. 7.3.1). Find the

.l.

op| o b

T

{—a, O

N

Figure 7.3.1. Find the area
inside the ellipse.

(0, -8

35.

*36.

37

area of the region inside this ellipse. [ Hint: Write
half the area as an integral and then change
variables in the integral so that it becomes the
integral for the area inside a semicircle.]

The curve y = x'/%, 1 < x < 8, is revolved about
the y axis to generate a surface of revolution of
area 5. In Chapter 10 we will prove that the area

is given by s mﬁﬁwﬁm dy. Evaluate this
integral.

Let f(x)=f]x(a'z/ t). Show, using substitution,
and without using logarithms, that f(a) + f(b)
= f(ab) if a,b > 0. [Hint: Transform | “ Ay

a change of variables.]

. (a) Find f“’/ 2cos’x sin x dx by substituting u =
0

cosx and changing the endpoints,
#*(b) Is the formula

[ gCengie) dx= [ 5O f(u) di
a &(a)

valid if a < b, yet g(a) > g(b)? Discuss.
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