7.4 Integration by Parts

Integrating the product rule leads to the method of integration by parts.

The second of the two important new methods of integration is developed in
this section. The method parallels that of substitution, with the chain rule
replaced by the product rule.

The product rule for derivatives asserts that

(FG ) (x) = F'(x)G(x) + F(x)G'(x).

Since F(x)G(x) is an antiderivative for F'(x)G(x) + F(x)G’(x), we can write
f [ F/(x)G(x) + F(x)G'(x)] dx= F(x)G(x) + C.

Applying the sum rule and transposing one term leads to the formula
f F(x)G'(x)dx= F(x)G(x) ——fF’(x)G(x)dx+ C.

If the integral on the right-hand side can be evaluated, it will have its own
constant C, so it need not be repeated. We thus write

fF(x)G*(x)dx= F(x)G(x) —fF'(x)G(x)a'x, (1)

which is the formula for integration by parts. To apply formula (1) we need to
break up a given integrand as a product F(x)G’(x), write down the right-hand
side of formula (1), and hope that we can integrate F’'(x)G(x). Integrands
involving trigonometric, logarithmic, and exponential functions are often good
candidates for integration by parts, but practice is necessary to learn the best
way to break up an integrand as a product.

Example 1 Evaluate fx cos x dx.

Solution If we remember that cosx is the derivative of sinx, we can write x cosx as
F(x)G'(x), where F(x) = x and G(x) = sinx. Applying formula (1), we have

fxcosxdx= x - sinx ——fl-sinxdx = xsinx —fsinxdx

= xsinx + cosx + C.
Checking by differentiation, we have

d;i(x sinx + cosx) = xcosx + sinx — sinx = xcos x,

as required. A



It is often convenient to write formula (1) using differential notation. Here we
write # = F(x) and v = G(x). Then du/dx = F'(x) and dv/dx = G'(x).
Treating the derivatives as if they were quotients of “differentials” du, dv, and
dx, we have du = F'(x)dx and dv = G'(x)dx. Substituting these into formula

(1) gives
fudv= uv—fvdu 2

(see Fig. 7.4.1).
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Integration by Parts
To evaluate fh(x) dx by parts:

1. Write A(x) as a product F(x)G'(x), where the antiderivative G(x) of
G'(x) 1s known.
2. Take the derivative F'(x) of F(x).
3. Use the formula
f F(x)G'(x)dx= F(x)G(x) — f F'(x)G(x)dx,

1.e., with u = F(x) and v = G(x),

fudt::= U —J‘udu.




When you use integration by parts, to integrate a function z write h(x) as a
product F(x)G'(x) = udv/dx; the factor G'(x) is a function whose antideriv-

ative v = G(x) can be found. With a good choice of u = F(x) and v = G(x),
the integral [ F/(x)G(x)dx = [vdu becomes simpler than the original problem
[udv. The ability to make good choices of # and v comes with practice. A last
reminder—don’t forget the minus sign.

Example 2 Find (a) f xsinx dx and (b) f x2sin x dx.
Solution (a) (Using formula (1)) Let F(x) = x and G'(x) = sin x. Integrating G'(x) gives
G(x)= —cosx; also, F'(x)=1, so
fxsinxdx*—-' ~— X COS X —f —cosxdx

= —xcosx — (—sinx)+ C

= —xcosx +sinx + C.
(0) (Using formula (2)) Let u = x% do =sinxdx. To apply formula (2) for
integration by parts, we need to know v. But v= [dv= [sinxdx =
—cos x. (We leave out the arbitrary constant here and will put it in at the end
of the problem.)
Now

fxzsinxdx= uv —fodu
= — x%cos X —J.—» cosx - 2x dx
= — x%cosx + 2fx cos x dx.

Using the result of Example 1, we obtain
— x’cosx + 2(xsinx + cosx) + C = — x’cosx + 2xsinx + 2cosx + C.

Check this result by differentiating—it is nice to see all the cancellation. A



Integration by parts is also commonly used in integrals involving e™ and In x.
Example 3 (a) Find f In x dx using integration by parts. (b) Find J-xe" dx.

Solution (a) Here, let ¥ =Inx, dv = 1dx. Then du = dx/x and v = [ldx = x. Apply-
ing the formula for integration by parts, we have

flnxdx= uv—fvdu= (lnx)x-—fx%
=xlnx wfldx= xInx — x+ C.

(Compare Example 7, Section 7.1.)
(b) Let u = x and v = e, so dv = e* dx. Thus, using integration by parts,

fxe"dx=fudv= uv *fudu

= xe"—fexdx= xe*—e*+ C. A

Next we consider an example involving both ¢* and sin x.

Example 4 Apply integration by parts twice to find je"sinx dx.

Solution Letu =sinx and v = e*, so dv = e*dx and

fe"sinx dx= e*sinx —fexcosxdx.

Repeating the integration by parts,
fe"cosxdx= e*cosx +fe"sinxdx, (4)

where, this time, ¥ = cos x and v = e¢”, Substituting formula (4) into (3), we get
fexsinx dx= e*sinx — e*cosx — fe"sinx dx.

The unknown integral [e*sinxdx appears twice in this equation. Writing *“I”
for this integral, we have

I=e"sinx — e*cosx — I,
and solving for I gives
— loXral .
I=1e"(sinx — cosx),
i.e.,

fe"sinxdx= %e"(sinx —cosx) + C.

Some students like to remember this as “the I method.” A



Some special purely algebraic expressions can also be handled by a clever
use of integration by parts, as in the next example.

Example 5 Find f x(x* + 1% dx.

Solution By taking x> out of x” and grouping it with (x* + 1)?/3, we get an expression
which we can integrate. Specifically, we set dv = 4x>(x* + 1)*/>dx, leaving
u=x*/4. Using integration by substitution, we get » =3(x*+ 1)*/3, and
differentiating, we get du = x>dx. Hence

[t e 32 1= 3 [
Substituting w = (x* + 1) gives

[PEt ) a= g+ ) G
hence

fx’(x“-r l)mdxmf—nx"(x"+ 1)5/3_%(x4+ 1)8/3+ c

=3 (x*+ 1)5/3(5x“ -3)+C. A

Using integration by parts and then the fundamental theorem of calculus, we
can calculate definite integrals.

/2
—a/2

Example 6 Find x sin x dx.

Solution From Example 2 (a) we have [xsinxdx = —xcosx + sinx + C, so

/2 xsinxdx = (— xcosx + sin x) "
~a/2 —n)2
m(- %cos% +sin%) ﬁ[%cos(— %) + sin(— %)]

=0+ —-[0+(-1)]=2a



Example 7 Find (a) L‘“ 2e*In(e* + 1)dx and (b) [“sin(inx)x.

Solution (a) Notice that e* is the derivative of (¢* + 1), so we first make the substitu-
tion ¢ = e* + 1. Then

n2 . _ 3
fo e*In(e* + 1)dx £1nzd.c,

and, from Example 3, fIntdt = tInt¢ — ¢ + C. Therefore

3

f'”eﬂn(ex +1)dx = (tlnt — 1)) = (31n3 - 3)— (2In2 - 2)
0

2
=3In3—21n2 — 1~0.9095.

(b) Again we begin with a substitution. Let u = Inx, so that x = ¢* and du =

(1/x)dx. Then [sin(Inx)dx = [(sinu)e"du, which was evaluated in Example

4. Hence

1

Lesin(lnx)dx =Lle“sinudu = %e“(sinu - cosu)

0

| . 1 .
[ ie'(sml — ¢os l)] ~[ Ee“(sm0- cosO)]

=%(sinl—cosl+%).1



Example 8

Solution

Region under
second bend

Region under
first bend

y=xsiny

Figure 7.4.2, What is the
area under the nth bend?

Find the area under the nth bend of y = xsinx in the first quadrant (see Fig.
7.4.2).

The nth bend occurs between x = (2n — 2)r and (2n — 1)«. (Check n=1 and
n =2 with the figure.) The area under this bend can be evaluated using
integration by parts [Example 2(a)]:

{2n—1ymw
2n—1 . .
( )wx sinxdx = —xcosx + sinx

(2n—2)w 2n—2m
= —(2n — lmcos[(2n — 1)z ] + sin[ 21 — 1)7 ]
+ (2n — 2ymcos(2n — 2)ym — sin(2n — 2)m

—(2n — D (—1) + 0+ (2n— 2)-:r(l) -0
=@2n— D7+ (2n— 2)7? = (4n - 3)'17.
Thus the areas under successive bends are 7, 5w, 97, 137, and so forth, A

We shall now use integration by parts to obtain a formula for the integral of

the inverse of a function.
If f is a differentiable function, we write f(x) = 1 f(x); then

[ fxydx=[1- fxydx = xf(x) = [ (x) dx. ®)
Introducing y = f(x) as a new variable, with dx = dy/f'(x), we get
[f(x)dx=2p— [xa. ©

Assuming that f has an inverse function g, we have x = g(y), and equation (6)
becomes

f(x)ax= xf(x) = | g(») - (7
f /

Thus we can integrate f if we know how to integrate its inverse. In the
notation y = f(x), equation (7) becomes

fy dx= xy —fx dy. ®)

Notice that equation (8) looks just like the formula for integration by parts,
but we are now considering x and y as functions of one another rather than as
two functions of a third variable.



Example 9 Use equation (8) to compute flnx dx.

Solution Viewing y = Inx as the inverse function of x = e”, equation (8) reads
flnxdx= Xy —feydy= xlnx —e’+ C=xInx - x + C,
which is the same result (and essentially the same method) as in Example 3. A

We can also state our result in terms of antiderivatives. If G(y) is an
antiderivative for g(y), then

F(x) = xf(x) = G(f(x)) ®)

is an antiderivative for f. (This can be checked by differentiation.)

Example 10 (a) Find an antiderivative for cos~'x. (b) Find f csc™WYx dx.

Solution (2) If f(x) = cos ™ 'x, then g(y) = cos y and G(y) = sin y. By formula (9),

F(x)= xcos™ 'x — sin(cos ™ 'x);
|
Vies? But sin(cos ™ 'x) =1 — x* (Fig. 7.4.3), so
x F(x)= xcos™'x =y1 = x?

Figure 7.4.3.
sin(cos™'x) =1 — x2 is an antiderivative for cos™'x. This may be checked by differentiation.

b Ify= cse™Yx , we have csc y =y/x and x = csc’y. Then
fcsc"\/;dx=fydx=xy—fxdy
= xcsc_‘v’;—fcsc:’ydy

vy
! =xcse x +coty+ C
e

i1 = xcse™Yx + coteseYx ) + C
Figure 7.4.4. 0 = csc™ x . =xcsc Wx +/x—1+C  (see Fig. 7.4.4). A



Example 11 (a) Find f VVx + 1 dx. (b) Find f xcos™\xdx, 0 < x < L.
Solution (a) If y =1yx + 1, then p>=yx + 1, yx = y*— 1, and x = (y*> — 1)>. Thus

we have

J.\N;+1 dx= xy—jxdy=x\,‘vf;+ mj(y4—2y2+ 1) dy
= xyVx + 1 —éy5+%y3—y+c

=i+ 1= Ly e 2y
W+ "+ c

(b) Integrating by parts,

2 2
fxccrs"'xabc2 Ez—cos"x +_J‘9§— 1 g
\!l—x2

The last integral may be evaluated by letting x = cosu:

2 2
f X dx= —f EBY sinudu= —fcos"udu
[~ 2 sinu

But cosiu = Mﬂ, SO

2
fcosludu— gsin2u+t 35 +C=Zsinucosu+ 3 +C.
Thus,
2 -1
f.x cos ™ xdx= % cos~'x — L sin(cos~x)x — S5_X 4 ¢
2 4 4
2
=X cos x— X 1-xF—Leos x+C. a

2 4 4



Exercises for Section 7.4

Evaluate the indefinite integrals in Exercises 1-26 using

integration by parts.
1. f(x + 1)cos x dx 2. f(x — 2)sin x dx
3. fxcos(Sx)a‘x 4, jxsin(l()x)dx
5. fxzcosxdx 6. fxzsinxdx
7. f (x + 2)e* dx 8. f (x? — 1)e* dx
9. f In(10x) dx 10. j xInxdx
11. J'lenxdx 12. fln(9+x?)dx
13. fsze” ds 14. f(s + 1Y% ds.
5 2
15.f.(—xsf—4)2/3dx I6.f-(ﬁdx
17. f 23cos 2 dt 18. j x“"i | dx
19. f %cos% dx 20. j xsin{ln x) dx
21. f tan x In(cos x) dx 2. f e¥e(e gy
23. f cos™'(2x)dx 24, f sin~'x dx

25. h/%—l dy 26. f(\/:?—z)'ﬂdx

27.

28.

29,

Find fsin xcosxdx by using integration by

parts with u = sinx and dv = cosx dx. Compare
the result with substituting u = sin x.

Compute J',/E dx by the rule for inverse func-

tions. Compare with the result given by the
power rule.

What happens in Example 2(a) if you choose
F'(x) = x and G(x) = sinx?

30. What would have happened in Example 5, if in
the integral [e*cos x dx obtained in the first inte-
gral by parts, you had taken u = e* and v = sinx

and integrated by parts a second time?
Evaluate the definite integrals in Exercises 31-46.

31. f /38 + 58)(sin 58) df
0
32. J' %y Inx dx
I
33. f *In x3 dx
1
34, flxe‘ dx
0
35. J“’I/‘t'(x2 + x — 1)cos x dx
0
36. f "/2sin 3x cos 2x dx
(1]
37. J;;g 4cos™ W(4x)dx
38. J"xtan“lxdx
0
39. f “(nx)*dx
1
40. f”zsin 2xcosxdx.
0
41. f 7 eXsin(2x) dx.
-0
2
42. fow sinyx dx. [Hint: Change variables first.]
43, [2xM0 + 1 2.
1
1 x3
44, (' — X ax.
b 2+ 1)
45. J‘ 17202 Gin =13 x dx.

o
46. Olcos"(\f)_f)dy.

10



47,

48.

45,

50.

B ()

S1.

52. (a) Prove the following reduction formula:

Show that
J;'\/z — dx—foﬁﬁjz =% de=(1 - /2)/2.

Find f 34f()c) dx, where f is the inverse function
2

of g(y)=y"+.
Find J‘zwxsinax dx as a function of a. What
}

happens to this integral as a becomes larger and

larger? Can you explain why?

(a) Integrating by parts twice (see Example 4),
find [sin ax cos bx dx, where a® s+ b2,

(b) Using the formula sin 2x = 2 sin x cos x, find
[sin ax cos bx dx when a = *+ b.

(¢) Let g(a)=(4/7)[¢/*sinxsinaxdx. Find a

formula for g(a). (The formula will have to

distinguish the cases 2=+ 1 and @® = 1.)

Evaluate g(a) for a=0.9, 0.99, 0.999,

0.9999, and so on. Compare the results with

g(1). Also try a = 1.1, 101, 1.001, and so on.

What do you guess is true about the func-

tion g ata = 1?7

(a) Integrating by parts twice, show that

fe""oosbxdx=e"( bsinbx + acosbx)+ c
a*+ b

(b) Evaluate f"/me3"cos 5x dx.
o

Jx"e"dx = x"e* — nfx"_ le* dx.

(b) Evaluate f *xle* dx
0

53. (a) Prove the following reduction formula:

fcos"xdx= %(cos%cstnx + 2 cosxsinx + }-ﬁ) + C.

54.. The mass density of a beam is p=x

55.

56.

n—1

fcns"x dx= 298

(b) Use part (a) to show that

n

fcoszx dx= %(cosx sinx+x)+ C

and

2 2

2,-x
kilograms per centimeter. The beam is 200 centi-
meters long, so its mass is M= [3pdx kilo-
grams. Find the value of M.

The volume of the solid formed by rotation of
the plane region enclosed by y =0, y =sinx,
x =0, x = 7, around the y axis, will be shown in

Chapter 9 to be given by VEf”ch sin x dx.
0

Find V.
The Fourier series analysis of the sawtooth wave
requires the compuiation of the integral

2
b, = @A (/e t sin(mwr) dt,
2nt s
where m is an integer and w and A are nonzero
constants, Compute it.

xsinx n; i fcos”‘zxdx_

57.

58.

*59,

#60.

*61.

*62.

The current i in an underdamped RLC circuit is
given by
2
i= EC( Ly w)e"“’sin(wt).

The constants are E = constant emf, switched on

at t =0, C = capacitance in farads, R = re-

sistance in ohms, L = inductance in henrys, a =

R/2L, w=(1/2L)4L/C — RH2,

(@) The charge Q in coulombs is given by
dQ/dt =i, and Q(0)=0. Find an integral
formula for Q, using the fundamental theo-
rem of calculus.

(b) Determine Q by integration.

A critically damped RLC circuit with a steady

emf of E volts has current i = ECo’te ~*, where

a = R/2L. The constants R, L, C are in ohms,

henrys, and farads, respectively. The charge Q in

coulombs is given by Q{T)=sz' dt. Find it
0

explicitly, using integration by parts.
Draw a figure to illustrate the formula for inte-
gration of inverse functions:

b x)dx= —af(a) — fiby
|, 16 de= 18 = af(a) - [ "V g (1)

where 0 < a < &, 0 < f(a) < f(b), f is increasing

on [a,b], and g is the inverse function of f.

(a) Suppose that ¢'(x) >0 for all x in [0, e0)
and ¢(0) = 0. Show thatifa > 0, b > 0, and
b is in the domain of ¢~', then Young's
inequality holds:

ab (J(;a¢(x)dx+f:¢“(_y)dy,

where ¢~! is the inverse function to ¢.
[Hint: Express [§¢~'(y)dy in terms of an
integral of ¢ by using the formula for inte-
grating an inverse function. Consider sepa-
rately the cases ¢(a) < b and ¢(a) > b. For
the latter, prove the inequality f;_l(b)fp(x)dx
> [3-np dx = bla— ¢ (B)]]

(b) Prove (a) by a geometric argument based on
Exercise 59.

() Using the result of part {(a), show that if
a,b>0and pg>1, with 1/p+1/g=1,
then Minkowski’s inequality holds:

ab€£+ﬁ.
P q

If fis a function on [0, 2+], the numbers

a, = (l/w)j}zwf(x)cos nx dx,
b, =(1/7) jo 2" f(x)sin nx dx

are called the Fourier coefficients of f (n=0,
+1,+2,...). Find the Fourier coefficients of:
(@) fG) =15 (b) f(x)=x; (¢) f(x)=x%
(d) f(x) =sin2x + sin 3x + cos4x.

Following Example 5, find a general formula for
[x2"~Yx" + 1)" dx, where n and m are rational
numbers with n =0, ms= —1, —2.



Review Exercises for Chapter 7

Evaluate the integrals in Exercises 1-46. 32. f xix+ 1 dx
1. f(x + sinx) dx 33 fx cos 3x dx
2. f(x+ )dx 34. frcosZrd:
l - x

35. J‘Bxcosbcdx

3. [ (x®+cosx)dx
f 36. fsian cos xdx
4. f(s:'*—Scosx)d:
37. fx%(":) dx
5 X __ w2 1 d.
. f(e X > + cosx) X 18. fxse("s‘dx
3
6. f(?‘r -+ cosx) dx 39, fx(ln x)? dx
7. f (e’ + 0%)do 40. f (Inx)? dx
SIV‘L,C 41‘Ie¢;dx
dx
42, | — =2 (Complete the square.)
9“[ 2smxdx fx1+2x+3( P a
10. flanx secx dx . j [cos;]ln(sm x)dx
In
11. J‘xze(xa) dx 44. f
12. f xe) dx 45. jtan x dx
5
13. f(x + 2y dx 46. fcos_'(l?.x)dx
14. .f Ix+4 Evaluate the definite integrals in Exercises 47-38.
15. f x4 dx 47. f ® e dx
-1
16. J’ (1 + 3x%exp(x + x) dx 48. f ®x In(5x) dx
1

17. f2c0322x sin2x dx
18. J’ssinsxcossxdx
19. fxtan_lxdx

49, f"/sx sin Sx dx
)

50. '[;"/ 4x cos 2x dx

2 _
2. (x5 ax 5L ["xPeos(1/x)ds
1. j { R S ,2] at 52, J;"/ 2x2cos(x)sin(x>) dx
V4 — [ /4 .,
2x 53. xtan™ 'xdx
2. f 1 i = dx 0
4 In(w/4)  x x
23. _J’xe‘“‘ dx >4 _J; e™tane” dx
24. J’ xeb* dx 55. f a*2_L__ g (substitute x ={F—a)
, b+l JT—a
25. fx cosx dx s
26 J‘ 2,2x 56. L’ dx
.| x%e™dx x+1
27. fe"‘cosxdx 57. J;'xﬁx +3 dx
28. fez"tan e¥* dx 58 _L;ﬁ 3
. 2
29. flenfixdx 34+ u .
In Exercises 59-66, sketch the region under the graph
30. fxalnxdx the given function on the given interval and find its
area.
31. f x/x ¥ 3 dx 55, 40— x* on [0,3]

60. sinx + 2x onf0, 47]

12



61.
62.
63.
64,
65.
66,

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

3x/v'x§+ 9 on [0,4]
xsin"'x +2on [0,1]
sinx on [0,7 /4]
sin2x on [0,7 /2]
1/x on [2,4]

xe~%* on [0, 1]

Let R, be the region bounded by the x axis, the
line x = 1, and the curve y = x". The area of R,
is what fraction of the area of the triangle R;?
Find the area under the graph of f(x)=
x/yx2+2 fromx=0to x = 2.

Find the area between the graphs of y = — x* —
2x—6 and y=e*+cosx from x=0 to x =
a /2.

Find the area above the »n™ bend of y = xsinx
which liesbelow the x axis. (See Fig. 7.4.2).
Water is flowing into a tank with a rate of
10(#2 + sin 1) liters per minute after time . Calcu-
late: (a) the number of liters stored after 30
minutes, starting at ¢ = 0; (b) the average flow
rate in liters per minute over this 30-minute
interval.

The velocity of a train fluctuates according to the
formula v = (100 + e~ ¥sin27r) kilometers per
hour. How far does the train travel: (a) between
t=0 and t=17; (b) between ¢ =100 and ¢
=101?

Evaluate f sin(mx /2)cos(mx)dx by integrating

by parts two different ways and comparing the
results.

Do Exercise 73 using the product formulas for
sine and cosine.

Evaluate f Y + x)/(1 — x) dx. [Hint: Multi-

ply numerator and denominator by 1+ x .]
Substitute x = sinu to evaluate '

x dx
yflwx?
and
2
J‘ xdx . goxc<l
\/l—xi
Evaluate:
Inx
@ [ZFax,
3 dx
(b) [3° —&X __ (usex=3tanu).
B xz-,j'x§+9

78. (a) Prove the following reduction formula:

n=1
X G X - . -
nos +”n1fsm” x dx

. sl
fsm"xdx= - 3m

if n>2, by integration by parts, with
= sin" " lx, v = —cosx. -

(b) Evaluate f sin’x dx by using this formula.
(c) Evaluate f sin'x dx.
79. Find fx"lnxdx using Inx = (1/(n+ 1))lnx"*!

and the substitution u = x"*1,

80. (a) Show that:
J’ x™(Inx)" dx

x"*(In x)"

-— m:_lfx”'(lnx)"_'dx.

(b) Evaluate f sz(ln x)*dx.
1

81. The charge Q in coulombs for an RC circuit with
sinusoidal switching satisfies the equation

ao 1 _ .
 +o0g 2= 100sin( 57 ). 2(0) =0,

The solution is
Q(1) = 100e =2 L‘e”"cos 5xdx.

(a) Find Q explicitly by means of integration by
parts.

B(b) Verify that 0(1.01) = 0.548 coulomb. [Hint:
Be sure to use radians throughout the calcu-
lation.]

82. What happens if [f(x)dx is integrated by parts
with # = f(x), v = x?

#83. Arthur Perverse believes that the product rule for

integrals ought to be that [f(x)g(x)dx equals

fX)[g(x)dx + g(x)[f(x)dx. We wish to show

him that this is not a good rule.

(a) Show that if the functions f(x)= x" and
g(x) = x" satisfy Perverse’s rule, then for
fixed n the number m must satisfy a certain
quadratic equation (assume n,m > 0).

(b) Show that the quadratic equation of part (a)
does not have any real roots for any n > 0.

(c) Are there any pairs of functions, f and g,
which satisfy Perverse’s rule? (Don’t count
the case where one function is zero.)

#84. Derive an integration formula obtained by read-
ing the quotient rule for derivatives backwards.

%85. Find f xe**cos(bx) dx.
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