HONORS PRE-CALC

Unit 7

10.6: Parametric Equations

Up until this point we have been representing a graph by a single equation involving two variables x and y. Today we will introduce the use of a third variable, t, to represent a curve in the plane.

Why??

- Rectangular equations can identify where an object has been but do not tell you when the object was at a given point (x,y) on the path. To determine this time, we will introduce a third variable \underline{t} , called a **parameter**. We will write both x and y as functions of t to obtain parametric equations.
- Because of this, parametric equations are useful for modeling situations involving position, yelocity, and acceleration.

<u>Plane Curve</u>: If f and g are continuous functions of t on an interval I, the set of ordered pairs (f(t), g(t)) is a plane curve C. The equations x = f(t) and y = g(t) are parametric equations for C and t is the parameter.

Part One: Sketching a Plane Curve

Example 1: Sketch the curve represented by the parametric equations

$$x = t^2 - 2t$$
 and $y = t - 2$ $-2 \le t \le 3$

t	X	у	(x,y)
-2	(-2)2-2(-2)	-2-2	(8,-4)
-1	$(-1)^2-2(-1)$	-1-2	(3,-3)
0	$(0)^2 - 2(0)$	0-2	(0,-2)
1	$(1)^2-2(1)$	1-2	(-1,-1)
2	$(2)^2 - 2(2)$	2-2	(0,0)
3	$(3)^2 - 2(3)$	3-2	(3,1)

* place arrows to indicate the direction of the increasing values of t.

Example 2: Sketch the curve represented by the parametric equations

$$x = \frac{1}{\sqrt{t}} \quad \text{and} \quad y = \frac{t^2}{4} \quad 1 \le t \le 6$$

t	X	y	(x,y)
	1=1	$\frac{1^2}{4} = \frac{1}{4}$	(1,.25)
2	1= 12	$\frac{2^2}{4} = \frac{4}{4} = 1$	(.71,1)
3	$\frac{1}{13} = \frac{13}{3}$	$\frac{3^2}{4} = \frac{9}{4}$	(.58, 2.25)
4	$\frac{1}{\sqrt{4}} = \frac{1}{2}$	42 = 16 = 4	(.5,4)
5	15 = 15	5 ² 25 4 4	(.45,6.25)
6	1 = 10	$\frac{6^2}{4} = \frac{36}{4} = 9$	(.41,9)

Part Two: Eliminating the Parameter (Find a rectangular equation)

To make graphing easier, sometimes it is helpful to eliminate the parameter to write a rectangular equation (in x and y) that has the same graph.

Steps:

- 1) Solve for t in one of the parametric equations
- 2) Substitute into the other parametric equation
- 3) Simplify

Example 3:

a) Create a table of x- and y- values by adjusting the domain of the given functions. Then sketch the curve represented by the equations: $x = \sqrt{t-2}$ and y = 1+t *Parametric Equations*

b) Find the rectangular equation by eliminating the parameter. Sketch its graph.
c) How do the graphs differ?
c) When you graph a rectangular equation, you lose the domain: t>2

c) When you graph a rectangular equation, you lose the direction domain restrictions and you lose the direction in which the graph is travelling as time increases.

You Try: Eliminate the Parameter and graph.

$$x = 3 + 2t$$
 and $y = -1 + 5t$

$$\frac{x-3}{2} = \frac{2t}{2}$$
 $1 = -1 + 5(\frac{x-3}{2})$
 $1 = -1 + 5\frac{x-3}{2}$
 $1 = -1 + 5\frac{x-3}{2}$

$$V = \frac{-2}{2} + \frac{5X}{2} - \frac{15}{2}$$

$$V = \frac{5}{2}X - \frac{17}{2}$$

Example 4: Eliminating an Angle Parameter

Sketch the curve represented by

$$\frac{x}{2} = \frac{2\cos\theta}{2}$$
 and $\frac{y}{3} = \frac{3\sin\theta}{3}$ for $0 \le \theta \le 2\pi$.

$$\frac{x}{2}$$
 = cas θ $\frac{y}{3}$ = sin θ

$$\begin{array}{c} \sin^2 \Theta + \cos^2 \Theta = 1 \\ (\frac{\sqrt{3}}{3})^2 + (\frac{x}{2})^2 = 1 \\ \frac{\sqrt{2}}{9} + \frac{\sqrt{2}}{4} = 1 \end{array} \longrightarrow \begin{array}{c} \sqrt{2} + \sqrt{2} \\ \sqrt{2} + \sqrt{2} = 1 \\ \sqrt{2} + \sqrt{2} = 1 \end{array} \longrightarrow \begin{array}{c} \alpha = 3 \\ b = 2 \end{array}$$

center: (0,0)

You Try: Eliminate the Parameter and graph.

$$\frac{x}{4} = \frac{4\cos\theta}{4} \text{ and } \frac{y}{-4} = \frac{-4\sin\theta}{-4} \text{ for } 0 \le \theta \le 2\pi.$$

$$\frac{x}{4} = \cos\theta \qquad \qquad \frac{y}{-4} = \sin\theta$$

$$\frac{X}{4} = \cos\theta$$
 $\frac{Y}{4} = \sin\theta$

$$\sin^2\theta + \cos^2\theta = 1$$

 $(\frac{1}{1})^2 + (\frac{1}{4})^2 = 1$
 $\frac{1}{16} + \frac{1}{16} = 1$
 $\frac{1}{16} + \frac{1}{16} = 1$
or $\frac{1}{16} + \frac{1}{16} = 1$
center: (0,0)
 $r = 4$

<u>Part Three</u>: Finding Parametric Equations for a Graph ** Parametric Equations come in PAIRS!** Example 5: Write parametric equations for the line y = 2x - 3 with x = -4t.

You Try: Write parametric equations for the line y = -4x + 1 with $x = \frac{t}{2}$.

$$y=-4(\frac{1}{2})+1$$
 $y=-2+1$

*Note

In the linear equation y = 2x - 3

X is the INDEPENDENT variable

is the DEPENDENT variable

In parametric equations

______ is the INDEPENDENT variable

are the DEPENDENT variables