7-5 Parametric Equations

Write each pair of parametric equations in rectangular form. Then graph the equation and state any restrictions on the domain.

9.
$$x = 2t - 5, y = t^2 + 4$$

SOLUTION:

Solve for t in the parametric equation for x.

$$x = 2t - 5$$

$$x + 5 = 2t$$

$$\frac{x+5}{2} = t$$

Substitute for t in the parametric equation for y.

$$y = t^{2} + 4$$

$$= \left(\frac{x+5}{2}\right)^{2} + 4$$

$$= \frac{x^{2} + 10x + 25}{4} + 4$$

$$= \frac{x^{2}}{4} + \frac{10x}{4} + \frac{25}{4} + 4$$

$$= 0.25x^{2} + 2.5x + 10.25$$

Make a table of values to graph v.

x	y	x	у
-13	20	-3	5
-11	13	-1	8
-9	8	1	13
-7	5	3	20
-5	4		

Plot the (x, y) coordinates and connect the points to form a smooth curve. The arrows in the graph indicate the orientation of the curve as t increases. Since substituting larger values for t in x = 2t - 5 produces increasing values of x, the orientation moves from left to right.

11.
$$x = t^2 - 2, y = 5t$$

SOLUTION:

Solve for t in the parametric equation for y.

$$y = 5t$$

$$\frac{y}{5} = t$$

Substitute for t in the parametric equation for x.

$$x = t^{2} - 2$$

$$x = \left(\frac{y}{5}\right)^{2} - 2$$

$$x + 2 = \left(\frac{y}{5}\right)^{2}$$

$$x + 2 = \frac{y}{5}$$

$$\pm\sqrt{x+2} = \frac{y}{5}$$

$$\pm 5\sqrt{x+2} = y$$

Make a table of values to graph y.

X	$\boldsymbol{\mathcal{Y}}$	
-2	0	
-1	-5, 5	
0	-7.1, 7.1	

Plot the (x, y) coordinates and connect the points to form a smooth curve. The arrows in the graph indicate the orientation of the curve as t increases. Since substituting larger values for t in y = 5t produces increasing values of y, the orientation moves from bottom to top.

13.
$$x = -t - 4$$
, $y = 3t^2$

SOLUTION:

Solve for t in the parametric equation for x.

$$x = -t - 4$$

$$x + 4 = -t$$

$$-x - 4 = t$$

Substitute for t in the parametric equation for y.

$$y = 3t^{2}$$

$$y = 3(-x - 4)^{2}$$

$$y = 3(x^{2} + 8x + 16)$$

$$y = 3x^{2} + 24x + 48$$

Make a table of values to graph y.

X	y	
-6	12	
-5	3	
-4	0	
-3	3	
-2	12	

Plot the (x, y) coordinates and connect the points to form a smooth curve. The arrows in the graph indicate the orientation of the curve as t increases. Since substituting larger values for t in x = -t - 4 produces decreasing values of x, the orientation moves from right to left.

15.
$$x = 4t^2$$
, $y = \frac{6t}{5} + 9$

SOLUTION:

Solve for t in the parametric equation for y.

$$y = \frac{6t}{5} + 9$$
$$y - 9 = \frac{6t}{5}$$
$$\frac{5(y - 9)}{6} = t$$

Substitute for t in the parametric equation for x. $x = 4t^2$

$$x = 4t^{2}$$

$$x = 4\left(\frac{5(y-9)}{6}\right)^{2}$$

$$\frac{x}{4} = \left(\frac{5(y-9)}{6}\right)^{2}$$

$$\pm\sqrt{\frac{x}{4}} = \frac{5(y-9)}{6}$$

$$\pm\frac{6\sqrt{x}}{5\sqrt{4}} = y - 9$$

$$\pm\frac{3\sqrt{x}}{5} = y - 9$$

$$\pm\frac{3\sqrt{x}}{5} + 9 = y$$

Make a table of values to graph y.

X	y	
0	9	
4	7.8, 10.2	
8	7.3, 10.7	
12	6.9, 11.1	
16	6.6, 11.4	

Plot the (x, y) coordinates and connect the points to form a smooth curve. The arrows in the graph indicate the orientation of the curve as t increases.

Since substituting larger values for t in $y = \frac{6t}{5} + 9$

produces increasing values of y, the orientation moves from bottom to top.

17. **MOVIE STUNTS** During the filming of a movie, a stunt double leaps off the side of a building. The pulley system connected to the stunt double allows for a vertical fall modeled by $y = -16t^2 + 15t + 100$, and a horizontal movement modeled by x = 4t, where x and y are measured in feet and t is measured in seconds. Write and graph an equation in rectangular form to model the stunt double's fall for $0 \le t \le 3$.

SOLUTION:

Solve for *t*.

$$x = 4t$$

$$\frac{x}{4} = t$$

Substitute for t.

$$v = -16t^2 + 15t + 100$$

$$y = -16\left(\frac{x}{4}\right)^2 + 15\left(\frac{x}{4}\right) + 100$$

$$y = -16\left(\frac{x^2}{16}\right) + 15\left(\frac{x}{4}\right) + 100$$

$$y = -x^2 + \frac{15x}{4} + 100$$

Make a table of values for $0 \le t \le 3$.

t	x	y
0	0	100
1	4	99
2	8	66
3	12	1

Plot the (x, y) coordinates for each t-value and connect the points to form a smooth curve. The arrows in the graph indicate the orientation of the curve as t moves from 0 to 3.

Write each pair of parametric equations in rectangular form. Then state the restriction on the domain.

$$34. \ x = \sqrt{t} + 4$$
$$y = 4t + 3$$

SOLUTION:

Solve for *t*.

$$x = \sqrt{t} + 4$$

$$x - 4 = \sqrt{t}$$

$$(x - 4)^{2} = t$$
Substitute.

$$y = 4t + 3$$

$$y = 4(x - 4)^{2} + 3$$

$$y = 4(x^{2} - 8x + 16) + 3$$

$$y = 4x^{2} - 32x + 67$$

From the parametric equation $x = \sqrt{t} + 4$, the only possible values for x are values greater than or equal to four. The domain of the rectangular equation needs to be restricted to $x \ge 4$.

$$37. \ x = \log(t - 4)$$
$$y = t$$

SOLUTION:

Solve for *t*.

$$x = \log (t - 4)$$

$$10^{x} = t - 4$$

$$10^{x} + 4 = t$$

Substitute.

$$y = t$$
$$y = 10^{x} + 4$$

From the parametric equation $x = \log(t - 4)$, x can be all real numbers. Therefore, there is no restriction on the domain.