Goals: To write parametric equations in rectangular form and vice versa.

Find a rectangular equation for the plane curve defined by the parametric equations.

1)
$$x = 3t$$
, $y = t + 7$

2)
$$x = t - 3$$
, $y = t^2 + 5$

3)
$$x = \sin \theta$$
, $y = 3 \cos \theta$

4)
$$x = 5 \tan \theta$$
, $y = 4 \cot \theta$

5)
$$x = \sec t$$
, $y = \tan t$

Find parametric equations for the rectangular equation.

6)
$$y = 3x - 4$$

7)
$$(x-2)^2 + (y-4)^2 = 4$$

8)
$$y = x^4 - 1$$

9)
$$(x + 2)^2 = 3y$$

Solve the problem.

10) Ron throws a ball straight up with an initial speed of 60 feet per second from a height of 3 feet. Find parametric equations that describe the motion of the ball as a function of time. How long is the ball in the air? When is the ball at its maximum height? What is the maximum height of the ball?

Answers

Testname: PARAMETRICS2010.TST

1) Answer:
$$y = x/3 + 7$$

2) Answer:
$$y = x^2 + 6x + 14$$

3) Answer:
$$9x^2 + y^2 = 9$$

4) Answer:
$$xy = 20$$

5) Answer:
$$x^2 - y^2 = 1$$

6) Answer:
$$x = t$$
 and $y = 3t - 4$

7) Answer:
$$x = 2 + 2 \cos t$$
 and $y = 4 + 2 \sin t$

8) Answer:
$$x = t$$
 and $y = t^4 - 1$

9) Answer:
$$x = t - 2$$
 and $y = \frac{t^2}{3}$

10) Answer:
$$x = 0$$
 and $y = -16t^2 + 60t + 3$
3.799 sec, 1.875 sec,
59.25 feet