Calculus with Parametric equations

Let $\mathcal C$ be a parametric curve described by the parametric equations x=f(t),y=g(t). If the function f and g are differentiable and y is also a differentiable function of x, the three derivatives $\frac{dy}{dx}$, $\frac{dy}{dt}$ and $\frac{dx}{dt}$ are related by the Chain rule:

$$\frac{dy}{dt} = \frac{dy}{dx} \frac{dx}{dt}$$

using this we can obtain the formula to compute $\frac{dy}{dx}$ from $\frac{dx}{dt}$ and $\frac{dy}{dt}$:

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} \qquad \text{if} \qquad \frac{dx}{dt} \neq 0$$

- ▶ The value of $\frac{dy}{dx}$ gives gives the slope of a tangent to the curve at any given point. This sometimes helps us to draw the graph of the curve.
- ▶ The curve has a **horizontal tangent** when $\frac{dy}{dx} = 0$, and has a **vertical** tangent when $\frac{dy}{dx} = \infty$.
- ▶ The second derivative $\frac{d^2y}{dx^2}$ can also be obtained from $\frac{dy}{dx}$ and $\frac{dx}{dt}$. Indeed,

$$\frac{d^2y}{dx^2} = \frac{d}{dx}(\frac{dy}{dx}) = \frac{\frac{d}{dt}(\frac{dy}{dx})}{\frac{dx}{dt}} \quad \text{if} \quad \frac{dx}{dt} \neq 0$$

Example 1 (a) Find an equation of the tangent to the curve $x = t^2 - 2t$ $y = t^3 - 3t$ when t = -2

- ▶ When t = -2, the corresponding point on the curve is P = (4 + 4, -8 + 6) = (8, -2).
- ▶ We have $\frac{dx}{dt} = 2t 2$ and $\frac{dy}{dt} = 3t^2 3$.
- ► Therefore $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{3t^2-3}{2t-2}$ when $2t 2 \neq 0$.
- ▶ When t = -2, $\frac{dy}{dx} = \frac{12-3}{-4-2} = \frac{9}{-6} = -\frac{3}{2}$.
- ▶ The equation of the tangent line at the point P is $(y+2) = -\frac{3}{2}(x-8)$.

Example 1 (b) Find the point on the parametric curve where the tangent is horizontal $x=t^2-2t$ $y=t^3-3t$

- From above, we have that $\frac{dy}{dx} = \frac{3t^2-3}{2t-2}$.
- $\frac{dy}{dx} = 0$ if $\frac{3t^2 3}{2t 2} = 0$ if $3t^2 3 = 0$ (and $2t 2 \neq 0$).
- Now $3t^2 3 = 0$ if $t = \pm 1$.
- ▶ When t = -1, $2t 2 \neq 0$ and therefore the graph has a horizontal tangent. The corresponding point on the curve is Q = (3, 2).
- ▶ When t = 1, we have $\frac{dx}{dt} = 2t 2 = 0$ and there is not a well defined tangent. If the curve describes the motion of a particle, this is a point where the particle has stooped. In this case, we see that the corresponding point on the curve is R = (-1, -2) and the curve has a cusp(sharp point).

Example 1 (c) Does the parametric curve given below have a vertical tangent? $x = t^2 - 2t$ $y = t^3 - 3t$

(d) Use the second derivative to determine where the graph is concave up and concave down.

Example 1 (c) Does the parametric curve given below have a vertical tangent? $x = t^2 - 2t$ $y = t^3 - 3t$

- From above, we have that $\frac{dy}{dx} = \frac{3t^2-3}{2t-2}$.
- ▶ The curve has a vertical tangent if 2t 2 = 0 (and $3t^2 3 \neq 0$).
- ▶ dx/dt = 2t 2 = 0 if t = 1, however in this case $dy/dt = 3t^2 3 = 0$, hence the curve does not have a vertical tangent.

(d) Use the second derivative to determine where the graph is concave up and concave down.

- ▶ If $\frac{dx}{dt} \neq 0$, we have $\frac{dy}{dx} = \frac{3t^2 3}{2t 2} = \frac{3}{2}(t + 1)$.
- ► Therefore $\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}(\frac{3}{2}(t+1))}{2t-2} = \frac{3}{4(t-1)}$
- ▶ We see that $\frac{d^2y}{dx^2} > 0$ if t > 1 and $\frac{d^2y}{dx^2} < 0$ if t < 1.
- ▶ Therefore the graph is concave up if t < 1 and concave down if t > 1. (when t = 1, the point on the curve is at the cusp).

Consider the curve $\ensuremath{\mathcal{C}}$ defined by the parametric equations

$$x = t \cos t$$
 $y = t \sin t$ $-\pi \le t \le \pi$

Find the equations of both tangents to $\mathcal C$ at $\left(0,\frac{\pi}{2}\right)$

- We first find the value(s) of t which correspond to this point. At this point, $t\cos t=0$, therefore, either t=0 or $\cos t=0$ and $t=\pm\frac{\pi}{2}$. When t=0, the corresponding point on the curve is (0,0) and when $t=\pm\frac{\pi}{2}$, the corresponding point is $(0,\frac{\pi}{2})$.
- ▶ We have $\frac{dy}{dt} = \sin t + t \cos t$ and $\frac{dx}{dt} = \cos t t \sin t$.
- ► Therefore $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\sin t t \cos t}{\cos t + t \sin t}$.
- ▶ When $t = \frac{\pi}{2}$, $\frac{dy}{dx} = \frac{1-0}{0-\frac{\pi}{2}} = \frac{-2}{\pi}$
- ▶ When $t = \frac{-\pi}{2}$, $\frac{dy}{dx} = \frac{-1 0}{0 (-\frac{\pi}{2})(-1)} = \frac{2}{\pi}$
- ▶ The equations of the tangents are given by $y \frac{\pi}{2} = \frac{-2}{\pi}x$ and $y \frac{\pi}{2} = \frac{2}{\pi}x$.

Area under a curve

Recall that the area under the curve y = F(x) where $a \le x \le b$ and F(x) > 0 is given by

$$\int_a^b F(x)dx$$

If this curve (of form y = F(x), F(x) > 0, $a \le x \le b$) can be traced out **once** by parametric equations x = f(t) and y = g(t), $\alpha \le t \le \beta$ then we can calculate the area under the curve by computing the integral:

$$\left| \int_{\alpha}^{\beta} g(t)f'(t)dt \right| = \int_{\alpha}^{\beta} g(t)f'(t)dt \quad \text{or} \quad \int_{\beta}^{\alpha} g(t)f'(t)dt$$

Area under a curve

Example Find the area under the curve

$$x = 2\cos t \qquad y = 3\sin t \qquad 0 \le t \le \frac{\pi}{2}$$

- The graph of this curve is a quarter ellipse, starting at (2,0) and moving counterclockwise to the point (0,3).
- From the formula, we get that the area under the curve is $\left| \int_{\alpha}^{\beta} g(t)f'(t)dt \right|$.
- $$\begin{split} & \int_{\alpha}^{\beta} g(t)f'(t)dt = \int_{0}^{\pi/2} 3\sin t (2(-\sin t))dt \\ & = -6 \int_{0}^{\pi/2} \sin^{2} t dt = -6\frac{1}{2} \int_{0}^{\frac{\pi}{2}} (1 \cos(2t))dt \\ & = -3[t \frac{\sin(2t)}{2}]_{0}^{\frac{\pi}{2}} = -3[\frac{\pi}{2} \frac{\sin \pi}{2} 0 + \frac{\sin 0}{2}] = -3[\frac{\pi}{2} 0] = \frac{-3\pi}{2} = -\frac{3\pi}{2}. \end{split}$$
- ▶ Therefore the area under the curve is $\frac{3\pi}{2}$.

Arc Length: Length of a curve

If a curve \mathcal{C} is given by parametric equations $x=f(t), y=g(t), \alpha \leq t \leq \beta$, where the derivatives of f and g are continuous in the interval $\alpha \leq t \leq \beta$ and \mathcal{C} is traversed exactly once as t increases from α to β , then we can compute the length of the curve with the following integral:

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt = \int_{\alpha}^{\beta} \sqrt{\left(x'(t)\right)^{2} + \left(y'(t)\right)^{2}} dt$$

▶ If the curve is of the form y = F(x), $a \le x \le b$, this formula can be derived from our previous formula

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$$

using the reverse substitution, x = f(t), giving $\frac{dx}{dt} = f'(t)$.

Example Find the arc length of the spiral defined by

$$x = e^t \cos t$$

$$x = e^t \cos t$$
 $y = e^t \sin t$ $0 \le t \le 2\pi$

$$0 < t < 2\pi$$

- $L = \int_0^{2\pi} \sqrt{e^{2t}(\cos t \sin t)^2 + e^{2t}(\sin t + \cos t)^2} dt$
- $= \int_0^{2\pi} e^t \sqrt{\cos^2 t 2\cos t \sin t + \sin^2 t + \sin^2 t + 2\sin t \cos t + \cos^2 t} dt$
- $= \int_0^{2\pi} e^t \sqrt{2} dt = \sqrt{2} e^t \Big|_0^{2\pi} = \sqrt{2} (e^{2\pi} 1).$

Example

Example Find the arc length of the circle defined by

$$x = \cos 2t$$
 $y = \sin 2t$ $0 \le t \le 2\pi$

Do you see any problems?

- ▶ If we apply the formula $L = \int_{\alpha}^{\beta} \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} dt$, then, we get
- $L = \int_0^{2\pi} \sqrt{4 \sin^2 2t + 4 \cos^2 2t} dt$
- $\triangleright = 2 \int_0^{2\pi} \sqrt{1} dt = 4\pi$
- ► The problem is that this parametric curve traces out the circle twice, so we get twice the circumference of the circle as our answer.