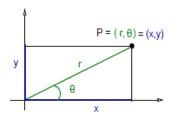
Area of regions in polar coordinates (Sect. 11.5)

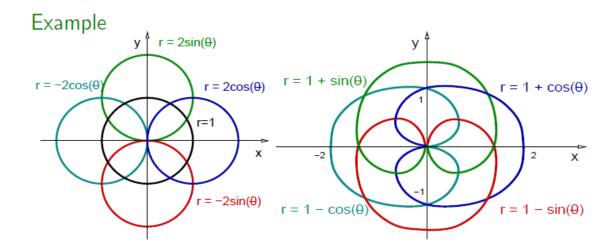
- ▶ Review: Few curves in polar coordinates.
- ▶ Formula for the area or regions in polar coordinates.
- ► Calculating areas in polar coordinates.

Transformation rules Polar-Cartesian.

Definition

The *polar coordinates* of a point $P \in \mathbb{R}^2$ is the ordered pair (r, θ) , with r > 0 and $\theta \in [0, 2\pi)$ defined by the picture.





Area of regions in polar coordinates (Sect. 11.5)

- ▶ Review: Few curves in polar coordinates.
- ► Formula for the area or regions in polar coordinates.
- ► Calculating areas in polar coordinates.

Formula for the area or regions in polar coordinates

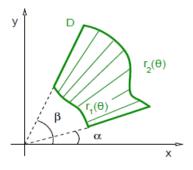
Theorem

If the functions $r_1, r_2 : [\alpha, \beta] \to \mathbb{R}$ are continuous and $0 \le r_1 \le r_2$, then the area of a region $D \subset \mathbb{R}^2$ given by

$$D = \{(r, \theta) \in \mathbb{R}^2 : r \in [r_1(\theta), r_2(\theta)], \theta \in [\alpha, \beta]\}.$$

is given by the integral

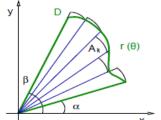
$$A(D) = \int_{\alpha}^{\beta} \frac{1}{2} \left(\left[r_2(\theta) \right]^2 - \left[r_1(\theta) \right]^2 \right) d\theta.$$



Remark: This result includes the case of $r_1 = 0$, which are fan-shaped regions.

Formula for the area or regions in polar coordinates

Idea of the Proof: Introduce a partition $\theta_k = k \Delta \theta$, with $k = 1, \dots, n$, and $\Delta \theta = \frac{\beta - \alpha}{n}$



The area of each fan-shaped region on the figure is,

$$A_k = \frac{1}{2} [r(\theta_k)]^2 \Delta \theta.$$

A Riemann sum that approximates the green region area is

$$\sum_{k=1}^{n} A_k = \sum_{k=1}^{n} \frac{1}{2} \left[r(\theta_k) \right]^2 \Delta \theta.$$

Refining the partition and taking a limit $n \to \infty$ one can prove that the Riemann sum above converges and the limit is called

$$A(D) = \int_{\alpha}^{\beta} \frac{1}{2} [r(\theta)]^2 d\theta.$$

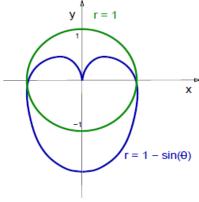
Area of regions in polar coordinates (Sect. 11.5)

- ▶ Review: Few curves in polar coordinates.
- ▶ Formula for the area or regions in polar coordinates.
- ► Calculating areas in polar coordinates.

Example

Find the area inside the circle r=1 and outside the cardiod $r=1-\sin(\theta)$.

Solution:



$$A = \int_{\alpha}^{\beta} \frac{1}{2} \left(1 - \left[1 - \sin(\theta) \right]^{2} \right) d\theta.$$

We need to find α and β . They are the intersection of the circle and the cardiod:

$$1 = 1 - \sin(\theta)$$
 \Rightarrow $\sin(\theta) = 0$ \Rightarrow
$$\begin{cases} \alpha = 0, \\ \beta = \pi. \end{cases}$$

Example

Find the area inside the circle r=1 and outside the cardiod $r=1-\sin(\theta)$.

Solution: Therefore:
$$A = \int_0^{\pi} \frac{1}{2} \left(1 - \left[1 - \sin(\theta) \right]^2 \right) d\theta.$$

$$A = \frac{1}{2} \int_0^{\pi} \left(2 \sin(\theta) - \sin^2(\theta) \right) d\theta$$

$$A = \frac{1}{2} \int_0^{\pi} \left(2 \sin(\theta) - \frac{1}{2} \left[1 - \cos(2\theta) \right] \right) d\theta$$

$$A = \frac{1}{2} \left(-2 \cos(\theta) \Big|_0^{\pi} - \frac{1}{2} \left[\pi - \frac{1}{2} \sin(2\theta) \Big|_0^{\pi} \right] \right)$$

$$A = \frac{1}{2} \left(4 - \frac{\pi}{2} \right) \quad \Rightarrow \quad A = 2 - \frac{\pi}{4}.$$

Example

Find the area of the intersection of the interior of the regions bounded by the curves $r = \cos(\theta)$ and $r = \sin(\theta)$.

Solution: We first review that these curves are actually circles.

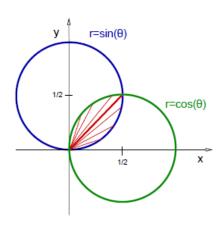
$$r = \cos(\theta) \Leftrightarrow r^2 = r\cos(\theta) \Leftrightarrow x^2 + y^2 = x.$$

Completing the square in x we obtain

$$\left(x - \frac{1}{2}\right)^2 + y^2 = \left(\frac{1}{2}\right)^2.$$

Analogously, $r = \sin(\theta)$ is the circle

$$x^2 + \left(y - \frac{1}{2}\right)^2 = \left(\frac{1}{2}\right)^2.$$



Example

Find the area of the intersection of the interior of the regions bounded by the curves $r = \cos(\theta)$ and $r = \sin(\theta)$.

Solution: The Theorem implies:
$$A = 2 \int_0^{\pi/4} \frac{1}{2} \sin^2(\theta) d\theta$$
;

$$A = \int_0^{\pi/4} \frac{1}{2} \left[1 - \cos(2\theta) \right] d\theta = \frac{1}{2} \left[\left(\frac{\pi}{4} - 0 \right) - \frac{1}{2} \sin(2\theta) \Big|_0^{\pi/4} \right];$$

$$A = \frac{1}{2} \left[\frac{\pi}{4} - \left(\frac{1}{2} - 0 \right) \right] = \frac{\pi}{8} - \frac{1}{4} \quad \Rightarrow \quad A = \frac{1}{8} (\pi - 2).$$

Also works:
$$A = \int_0^{\pi/4} \frac{1}{2} \sin^2(\theta) d\theta + \int_{\pi/4}^{\pi/2} \frac{1}{2} \cos^2(\theta) d\theta$$
.

 \triangleleft