APPM 1360 - Calculus 2 ## Course Objectives: This course extends the concepts and techniques of single-variable Calculus. The main objectives are to: - · Improve integration techniques and applications of differential and integral calculus - Understand sequences and series - · Improve problem solving and critical thinking skills. This class will form the basis of your set of everyday working skills required for math, engineering and the sciences. Textbook: *Essential Calculus*, 2nd Edition by James Stewart. We will cover Chapters 6-9. You will also need an access code for WebAssign's online homework system. The access code can also be purchased separately. ## SCHEDULE AND TOPICS COVERED | Day | Section | Topics | |-----|---------------|--| | 1 | Chap 5 Review | Derivatives and Basic Integration | | 2 | 6.1 | Integration by Parts | | 3 | 6.1/6.2 | Integration by Parts cont'd. / Trigonometric Integrals | | 4 | 6.2 | Trigonometric Substitutions | | 5 | 6.3 | Partial Fractions | | 6 | 6.3 | Partial Fractions cont'd. | | 7 | 6.5 | Numerical Integration | | 8 | 6.6 | Improper Integrals | | 9 | 6.6 | Improper Integrals cont'd. | | 10 | 7.1/7.2 | Areas between Curves / Volumes | | 11 | 7.2 | Volumes | | 12 | 7.2/7.3 | Volumes by Cylindrical Shells | | 13 | Exam 1 Review | Exam 1 Topics | | 14 | 7.3 | Volumes by Cylindrical Shells cont'd. | | 15 | 7.4 | Arc Length | | 16 | 7.5 | Area of a Surface of Revolution | | 17 | 7.6 | Applications to Physics/Engineering | | 18 | 7.6/7.7 | Applications/Differential Equations | | 19 | 8.1 | Sequences | | 20 | 8.1 | Sequences cont'd. | | 21 | 8.2 | Series | | 22 | 8.2 | Series cont'd. | | 23 | 8.3 | The Integral and Comparison Tests | | 24 | 8.3 | The Integral and Comparison Tests cont'd. | | 25 | Exam 2 Review | Exam 2 Topics | | 26 | 8.4 | Alternating Series, Absolute Convergence, Ratio and Root Tests | | 27 | 8.4 | Alternating Series, Absolute Convergence, Ratio and Root Tests | | 27 | 0.4 | cont'd. | | 28 | 8.5 | Power Series | | 29 | 8.5 | Power Series cont'd. | | 30 | 8.6 | Representing Functions as Power Series | | 31 | 8.6/8.7 | Rep. Funcs cont'd./Taylor & Maclaurin Series | | 32 | 8.7 | Taylor & Maclaurin Series | | 33 | 8.7 | Taylor & Maclaurin Series cont'd. | | 34 | 8.8 | Applications.of Taylor Polynomials | | 35 | 9.1 | Parametric Curves | | 36 | 9.2 | Calculus of Parametric Curves | | 37 | Exam 3 Review | Exam 3 Topics | | 38 | 9.2 | Calculus of Parametric Curves cont'd. | | 39 | 9.3 | Polar Coordinates | | 40 | 9.3 | Polar Coordinates cont'd. | | 41 | 9.4 | Area/Length in Polar | | 42 | 9.4/Conics | Area/Length in Polar con't.d / Conics | | 43 | Conics | Conics | | 44 | Final Review | Cumulative | | Review trigonometric identities including sin² θ + cos² θ = 1 cos 2θ = 2 cos² θ − 1 = 1 − 2 sin² θ Review antiderivatives of trig functions including ∫ tanx dx = ln secx + C ∫ sec x dx = ln secx + tanx + C ∫ dx/(a²+x²) = 1/a tan⁻¹ x/a + C ∫ √(dx)/(a²-x²) = sin⁻¹ x/a + C Use trigonometric identities to integrate trigonometric functions ing ∫ sin² x cos² x dx ∫ tan² x sec² x dx Perform trigonometric substitutions for √(a² - x²), √(a² + x²), √(3² + x²) Evaluate an integral by completing a square. 6.3 Partial Fractions Decompose a rational function into simpler fractions. Decompose a rational function into simpler fractions, possibly real review factoring of polynomials, including high order polynomials for improper functions begin by dividing polynomials. | | |---|------------------------| | • Review antiderivatives of trig functions including • Review antiderivatives of trig functions including • $\int \tan x dx = \ln \sec x + C$ • $\int \sec x dx = \ln \sec x + \tan x + C$ • $\int \frac{dx}{a^2+x^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$ • Use trigonometric identities to integrate trigonometric functions ing • $\int \sin^m x \cos^n x dx$ • $\int \tan^m x \sec^n x dx$ • Perform trigonometric substitutions for $\sqrt{a^2 - x^2}$, $\sqrt{a^2 + x^2}$, $\sqrt{3}$ • Evaluate an integral by completing a square. 6.3 • Partial Fractions • Decompose a rational function into simpler fractions. • Denominators will be linear or quadratic factors, possibly reactions. • Review factoring of polynomials, including high order polynomials. | | | Review antiderivatives of trig functions including ∫ tan x dx = ln sec x + C ∫ sec x dx = ln sec x + tan x + C ∫ dx/(a²+x²) = 1/a tan² x/a + C ∫ dx/√(a²-x²) = sin² x/a + C Use trigonometric identities to integrate trigonometric functions ing ∫ sin² x cos² x dx ∫ tan² x sec² x dx Perform trigonometric substitutions for √(a² - x²), √(a² + x²), √(x² + x²) Evaluate an integral by completing a square. 6.3 Partial Fractions Decompose a rational function into simpler fractions. Denominators will be linear or quadratic factors, possibly recompleting of polynomials, including high order polynomials. | | | | | | ∫ sec x dx = ln sec x + tan x + C □ ∫ dx/(a²+x²) = 1/a tan⁻¹ x/a + C □ ∫ dx/√(a²-x²) = sin⁻¹ x/a + C • Use trigonometric identities to integrate trigonometric functions ing □ ∫ sin^m x cosⁿ x dx □ ∫ tan^m x secⁿ x dx • Perform trigonometric substitutions for √(a² - x²), √(a² + x²), √(a² + x²), √(a² + x²) • Evaluate an integral by completing a square. 6.3 Partial Fractions • Decompose a rational function into simpler fractions. − Denominators will be linear or quadratic factors, possibly reference a review factoring of polynomials, including high order polynomials. For improper functions begin by dividing polynomials. | | | ∫ dx/(a²+x²) = 1/a tan⁻¹ x/a + C ∫ dx/(√a²-x²) = sin⁻¹ x/a + C Use trigonometric identities to integrate trigonometric functions ing ∫ sin^m x cosⁿ x dx ∫ tan^m x secⁿ x dx Perform trigonometric substitutions for √(a² - x²), √(a² + x²), √(a² + x²) Evaluate an integral by completing a square. 6.3 Partial Fractions Decompose a rational function into simpler fractions. − Denominators will be linear or quadratic factors, possibly reference are recompleted by dividing high order polynomials. For improper functions begin by dividing polynomials. | | | ∫ dx/(a²-x²) = sin⁻¹ x/a + C Use trigonometric identities to integrate trigonometric functions ing ∫ sin² x cos² x dx ∫ tan² x sec² x dx Perform trigonometric substitutions for √(a² - x²), √(a² + x²), √(a² + x²), √(a² + x²) Evaluate an integral by completing a square. 6.3 Partial Fractions Decompose a rational function into simpler fractions. Denominators will be linear or quadratic factors, possibly realized and polynomials, including high order polynomials, including high order polynomials. | | | Use trigonometric identities to integrate trigonometric functions ing ∫ sin^m x cosⁿ x dx ∫ tan^m x secⁿ x dx Perform trigonometric substitutions for √a² - x², √a² + x², √3 Evaluate an integral by completing a square. Decompose a rational function into simpler fractions. Denominators will be linear or quadratic factors, possibly receive factoring of polynomials, including high order polynomials. For improper functions begin by dividing polynomials. | | | ing □ ∫ sin ^m x cos ⁿ x dx □ ∫ tan ^m x sec ⁿ x dx • Perform trigonometric substitutions for √a ² - x ² , √a ² + x ² , √x • Evaluate an integral by completing a square. 6.3 Partial Fractions • Decompose a rational function into simpler fractions. - Denominators will be linear or quadratic factors, possibly recomposed a rational formula of polynomials, including high order polynomials. - For improper functions begin by dividing polynomials. | | | ∫ tan^m x secⁿ x dx Perform trigonometric substitutions for √a² - x², √a² + x², √x Evaluate an integral by completing a square. Decompose a rational function into simpler fractions. Denominators will be linear or quadratic factors, possibly recomposed a rational function of polynomials, including high order polynomials. For improper functions begin by dividing polynomials. | includ- | | Perform trigonometric substitutions for √a² - x², √a² + x², √a² Evaluate an integral by completing a square. Decompose a rational function into simpler fractions. Denominators will be linear or quadratic factors, possibly recomposed a rational function of polynomials, including high order polynomials. For improper functions begin by dividing polynomials. | | | Partial Fractions Decompose a rational function into simpler fractions. Denominators will be linear or quadratic factors, possibly reconstruction. Review factoring of polynomials, including high order polynomials. | | | Partial Fractions Decompose a rational function into simpler fractions. Denominators will be linear or quadratic factors, possibly reconstructions and proper functions of polynomials, including high order polynomials. For improper functions begin by dividing polynomials. | $\overline{a^2-a^2}$. | | Decompose a rational function into simpler fractions. Denominators will be linear or quadratic factors, possibly reconstructions. Review factoring of polynomials, including high order polynomials. For improper functions begin by dividing polynomials. | | | Denominators will be linear or quadratic factors, possibly re Review factoring of polynomials, including high order polynomials. For improper functions begin by dividing polynomials. | | | Review factoring of polynomials, including high order polynomials. For improper functions begin by dividing polynomials. | | | - For improper functions begin by dividing polynomials. | peated. | | | omials. | | | | | Use the decomposition to integrate the rational function. | | | 6.5 Approximate Integra- | | | tion Estimate definite integrals using midpoint rule and trapezoidal in the state of th | ule. | | Draw appropriate diagrams to illustrate the approximation. | | | Determine whether an approximation is an underestimate or o mate. | | | Determine error bounds for midpoint and trapezoidal approxim | veresti- | | • [Skip section on Simpson's Rule.] | | | 6.6 | Improper Integrals | | |-----|---------------------------|--| | | | Evaluate an integral with an infinite interval by rewriting in the form of
a limit. | | | | Evaluate an integral with a discontinuous integrand by rewriting in the
form of a limit. | | | | • Determine the convergence or divergence of $\int_1^\infty \frac{1}{x^p} dx$. | | | | Apply the Comparison Test to determine the convergence or divergence
of an improper integral. | | 7.1 | Areas between Curves | | | | | - Calculate the area of a region bounded by $y = f(x)$ and $y = g(x)$. | | | | - Calculate the area of a region bounded by $x=f(y)$ and $x=g(y)$. | | 7.2 | Volumes | | | | | • Draw a diagram to illustrate a solid formed by rotating a region about a line $y=k$ or $x=k$. | | | | • Find the volume of a solid of revolution using the Disk Method. | | | | Find the volume of a solid of revolution using the Washer Method. | | | | • Find the volume of a solid by slicing. | | 7.3 | Volumes by Cylindrical | | | | Shells | • Find the volume of a solid of revolution using the Shell Method. | | | | Decide whether Disk/Washer or Shell Method is the best approach for
calculating the volume of a given solid. | | 7.4 | Arc Length | | | | | - Calculate the length of a curve $y=f(x)$ or $x=g(y)$ on a given interval. | | | | Determine an arc length function. | | 7.5 | Area of a Surface of Rev- | | | | olution | - Find the area of a surface formed by rotating a curve $y=f(x)$ or $x=g(y)$ about a line. | | | | - Axis of rotation may be $y = k$ or $x = k$. | | | | • Determine whether the differential ds should be expressed in terms of dx or dy . | | | | | | 7.6 | Applications to Physic-
s/Engineering | | |-----|--|--| | | s/Engineering | Calculate the amount of work done when moving an object. | | | | Determine moments and centers of mass for | | | | point masses in 1D and 2D systems. | | | | a 2D region bounded by a curve and the x-axis or y-axis. | | | | a 2D region bounded by two curves. | | | | Given the centroid of a region, use the Theorem of Pappus to compute
the volume of the solid of revolution formed by rotating the region about
a line. | | | | • [Skip section on Hydrostatic Pressure and Force]. | | 7.7 | Differential Equations | | | | | Recognize and solve separable equations, possibly with initial values. | | | | Solve logistic growth problems. | | | | • [Skip sections on Mixing Problems and Direction Fields.] | | 8.1 | Sequences | | | | | Calculate the limit of a sequence. | | | | • Recognize the geometric $\{r^n\}$ sequence. | | | | Recognize monotonic bounded sequences. | | | | • Determine the convergence of an alternating sequence $\{a_n\}$ by examining $\{ a_n \}$. | | | | • Use the Squeeze Theorem to determine the convergence of a sequence. | | | | Determine the convergence of a sequence defined recursively. | | | | Simplify expressions involving factorial. | | 8.2 | Series | | | | | Calculate the partial sums of a series. | | | | Calculate the sum of a series by evaluating the limit of partial sums. | | | | Calculate the sum of a geometric series. | | | | Prove that the harmonic series diverges. | | | | Use the Test for Divergence to demonstrate divergence of a series. | | | | Recognize and calculate the sum of a telescoping series. | | | | Reindex series to begin at any integer value. | | | | | | 8.3 | The Integral and Com- | | |-----|--|---| | | parison Tests | Determine the convergence or divergence of a series by | | | | applying the Integral Test. | | | | - recognizing a p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$. | | | | using the (Direct) Comparison Test. | | | | using the Limit Comparison Test. | | 8.4 | Alternating Series, Absolute Convergence, Ratio and Root Tests | Alternating Series 1. Use the Alternating Series Test to determine convergence or divergence. 2. Use the Alternating Series Estimation Theorem to find an upper bound for the error of an approximation. 3. Determine the number of terms needed to ensure a given error bound for an approximation. 4. Prove that the alternating harmonic series converges. Distinguish between absolute and conditional convergence of a series. Determine the convergence or divergence of a series by applying the | | | | Ratio or Root Test. | | 8.5 | Power Series | | | | | • Find the center, radius and interval of convergence of a power series. | | | | Apply the Ratio Test to find an interval of absolute convergence. | | | | Check endpoints separately for possible absolute or conditional
convergence. | | | | - Radius of convergence may equal $0, \infty$ or a constant. | | 8.6 | Representing Functions
as Power Series | Find power series for functions that correspond to geometric series. Differentiate or integrate a power series to obtain another power series with the same radius of convergence. Find power series for 1/(1-x) and its derivatives. Find the power series for ln(1+x) and tan⁻¹x. | | 8.7 | Taylor & Maclaurin Se- | | |-----|---------------------------------------|---| | | ries | Find the Taylor or Maclaurin series of a function using its derivatives. | | | | • Find the n th order Taylor polynomial of a Taylor series. | | | | • Determine the Maclaurin series for e^x , $\sin x$ and $\cos x$,. | | | | Use important Maclaurin series to compute the sums of power series
and to find power series for functions. | | | | • Evaluate a binomial coefficient $\binom{k}{n}$. | | | | - Use the binomial series formula to find Maclaurin series for $(1+x)^k$ for various values of k . | | | | Calculate the product or quotient of power series. | | 8.8 | Applications.of Taylor
Polynomials | Apply Taylor's Formula to find an upper bound for the remainder when a Taylor polynomial T_n(x) is used to approximate a Taylor series. Use Taylor series to solve physics applications. | | 9.1 | Parametric Curves | | | | | • Graph a parametric curve $x=f(t),\ \ y=g(t)$ and indicate direction of movement. | | | | Convert between Cartesian and parametric forms of a curve. | | | | Recognize parametric equations for a circle or ellipse. | | | | Derive the parametric equations for a cycloid. | | 9.2 | Calculus of Parametric
Curves | Find the tangent slope to a parametric curve. Calculate the area of a region bounded by a parametric curve. Find the length of a parametric curve. | | 9.3 | Polar Coordinates | | | | | Convert between polar and Cartesian coordinates. Graph polar curves r = f(θ). Recognize common polar curves, including circles, cardioids, lemniscates, n-leaved roses, and spirals. | | | | Calculate the tangent slope to a polar curve. | | 9.4 | Areas and Lengths in Polar Coordinates | Find the points where two polar curves intersect. Find the area of a region bounded by a polar curve. Find the area of a region bounded by two polar curves. Calculate the length of a polar curve. | |---------|--|--| | Handout | Conic Sections | Identify the major/minor axes and foci of an ellipse given its equation in Cartesian coordinates. Identify the major axis, foci, and asymptotes of a hyperbola given its equation in Cartesian coordinates. Find an equation for a parabola given its focus and directrix. [Skip conic sections in polar form.] |