CALCULUS BC POLAR Quiz Review

Work the following on notebook paper. Do not use your calculator except on problem 10.

- 1. Find the slope of the curve $r = 2 3\sin\theta$ at the point $(2, \pi)$.
- 2. Find the equation of the tangent line to the curve $r = 3\sin(2\theta)$ at the point where $\theta = \frac{\pi}{3}$.

On problems 3-5, set up an integral to find the area of the shaded region. Do not evaluate.

3.
$$r = \theta$$

4.
$$r=1+\sin\theta$$

5.
$$r = 2\sin 4\theta$$

6. Sketch the polar region described by the following integral expression for area:

$$\frac{1}{2}\int_0^{\pi/3}\sin^2(3\theta)d\theta$$

Use your calculator on problem 7.

- 7. Given the polar curve $r = \theta + 2\sin\theta$ for $0 \le \theta \le 2\pi$
 - (a) Sketch the graph of the curve.
 - (b) Find the angle θ that corresponds to the point(s) on the curve where x = -1.
 - (c) Find the angle θ that corresponds to the point(s) on the curve where v = 2.
- 8. The figure shows the graphs of the line $y = \frac{2}{3}x$ and

the curve C given by $y = \sqrt{1 - \frac{x^2}{4}}$. Let S be the region

in the first quadrant bounded by the two graphs and the x-axis. The line and the curve intersect at point P.

- (a) Find the coordinates of P.
- (b) Set up and evaluate an integral expression with respect to *x* that gives the area of *S*.
- (c) Find a polar equation to represent curve C.
- (d) Use the polar equation found in (c) to set up and evaluate an integral expression with respect to the polar angle θ that gives the area of S.

Answers

Answers to Polar Quiz Review 1. $\frac{2}{3}$

1.
$$\frac{2}{3}$$

2.
$$y - \frac{9}{4} = \frac{\sqrt{3}}{5} \left(x - \frac{3\sqrt{3}}{4} \right)$$

$$3. \ \frac{1}{2} \int_0^{\pi} \theta^2 d\theta$$

4.
$$\frac{1}{2} \int_{\pi/2}^{\pi} (1 + \sin \theta)^2 d\theta$$

5.
$$\frac{1}{2} \int_0^{\pi/4} (2\sin 4\theta)^2 d\theta$$

6. 1 petal of $r = \sin 3\theta$

7. (a) graph

(b) 1.839, 4.295

(c) 0.921, 2.563

(a) (1.2, 0.8)

(b) 0.927

(c)
$$r^2 = \frac{4}{4\sin^2\theta + \cos^2\theta}$$

(d) 0.927

- 9. A curve is drawn in the *xy*-plane and is described by the equation in polar coordinates $r = \theta + \cos(3\theta)$ for $\frac{\pi}{2} \le \theta \le \frac{3\pi}{2}$, where r is measured in meters and θ is measured in radians.
 - (a) Find the area bounded by the curve and the y-axis.
- (b) Find the angle θ that corresponds to the point on the curve with y-coordinate -1.
- (c) For what values of θ , $\pi \le \theta \le \frac{3\pi}{2}$, is $\frac{dr}{d\theta}$ positive? What does this say about r? What does it say about the curve?
- (d) Find the value of θ on the interval $\pi \le \theta \le \frac{3\pi}{2}$ that corresponds to the point on the curve with the greatest distance from the origin. What is the greatest distance? Justify your answer.
- 10. A region *R* in the *xy*-plane is bounded below by the *x*-axis and above by the polar curve defined by $r = \frac{4}{1 + \sin \theta}$ for $0 \le \theta \le \pi$.
 - (a) Find the area of R by evaluating an integral in polar coordinates.
 - (b) The curve resembles an arch of the parabola $8y = 16 x^2$. Convert the polar equation to rectangular coordinates, and prove that the curves are the same.
 - (c) Set up and evaluate an integral in rectangular coordinates that gives the area of R.

Answers

- 9. (a) 19.675
 - (b) 3.485
 - (c) $\frac{dr}{d\theta} > 0$ for $(\pi, 4.302)$. (Moves away from origin)
 - (d) The greatest distance is 5.245 when $\theta = 4.302$.

10. (a) 10.667 (b)
$$r + r \sin \theta = 4$$
, $\sqrt{x^2 + y^2} + y = 4$
 $x^2 + y^2 = 16 - 8y + y^2$, $8y = 16 - x^2$
(c) 10.667