nth Term Test for Divergence (ONLY)

If $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ diverges.

(think about it, it should make perfect sense!)

Note: This does **NOT** say that if $\lim_{n \to \infty} a_n = 0$, then the series **DOES** converge. This test can only be used to prove that a series diverges (hence the name.) If $\lim_{n\to\infty} a_n = 0$, then this test doesn't tell us anything, is inconclusive, doesn't work, fails, etc. . . . We MUST use another test. This test can be a GREAT time-

Example 9:

Determine whether the following series converge or diverge. If they converge, find their sum.

(a)
$$\sum_{n=1}^{\infty} \frac{2n+3}{3n-5} = \frac{7}{3} \neq 0$$

(a)
$$\sum_{n=1}^{\infty} \frac{2n+3}{3n-5} = \frac{7}{3} \neq 0$$
 (b) $\sum_{n=1}^{\infty} \frac{n!}{2n!+1} = \frac{1}{2} \neq 0$ (c) $\sum_{n=1}^{\infty} \frac{3^n-2}{3^n} = 1 \neq 0$ (d) $\sum_{n=2}^{\infty} \frac{1}{(1.1)^n}$ DIVERGES DIVERGES

(c)
$$\sum_{n=1}^{\infty} \frac{3^n - 2}{3^n} = 1 \neq 0$$

(d)
$$\sum_{n=2}^{\infty} \frac{1}{(1.1)^n}$$