CH.9 INFINITE SERIES
9-1Sequences

Sequence: A sequence is a list of numbers, called terms, in a definite order. Sequences of objects are

most commonly denoted using braces.
= [f the limit of a sequence exists, then we say the sequence converges. Otherwise the sequence diverges.

. w3n+5
EX#1: Given {(\—1] ':Hf find the third term:

n —4

Recursively defined sequence : Each subsequent term depends on the previous term.
EX#2: a,=5a,+10 ; qg=-2

a, = a, = a,= as =

Most famous recursively defined sequence is the Fibonacci Sequence: a,.,=gq,+a,,; ;: =1, a,=1

Fibonacci Sequence: 1.1.2.3,5.8,13.21, , . s e

Fibonacci Petals

3 petals = lily, iris 5 petals = buttercup, wild rose, larkspur, columbine
8 petals = delphiniums 13 petals = ragwort, corn marigold, cineraria
21 petals = aster, black-eyed susan, chicory 34 petals = plantain, pytethrum

55, 89 petals = michelmas daisies, the asteraceae family
Humans exhibit Fibonacei characteristics.
The Golden Ratio is seen in the proportions in the sections of a finger.

EX#3: Determine the convergence or divergence of each sequence

_[3nt+5] T2 ) a-|onts ={5-11
a) an_{jng—?J b) a"_l_8n2—4} c) Gn_{ F9n3+l} d) an_{s_nj

EX#4: Simplify each

20! 7 (n+1)! (n+1)!
9 1o ?) 1o - D (a2
. n 9 n+l ntl gn

¢) (n+3)! f 6 2) (x+2) ) x5

e — Y
”T 6H+ (-r + 2 ]H xf! . :)ﬂ



9-2 Series and Convergence

Infinite series:

2.(1" =a,ta,ta,ta;+...... +a,+....

n=1

Definition of Convergent and Divergent series :

For the infinite series z a, . the nth partial sum is given by §, =a, +a, +a;+a, +........... +a,.

If the sequence of partial sums {S, } converges to S, then the series z d, converges.

The limit S is called the sum of the series. S=a,+a, +a;+a, +.......... +a,+...

If {S, } diverges, then the series diverges.

Geometric series :

Z.ar” —a+ar+ar’+ar’+..... +ar"+ ... az0
n=0

+ % x(yeometric series Test :

A geometric series z a-r" converges iff ‘ r‘ <1. A geometric series Z a-r" diverges iff ‘ r‘ >1.
n=m n=m

a,

If a geometric series converges, it converges to the Sum: S=

—r

## % nth term test (Used to show immediate divergence)

If lima, =0 then it may converge. (bottom power is greater and we must proceed and use a different test,

n—co

because this test cannot prove convergence).
If lima, #0 then it diverges (top power is the same or greater than the bottom power).

R—3oo

EX #1: Test for Convergence

a) i ; b) i[

n=0 = n=0

) o I

1| Lo

(WS

EX #2: A ball is dropped from a height of 6 feet and begins bouncing. The height of each bounce is —

i

the height of the previous bounce. Find the total vertical distance travelled by the ball.



* % *Telescoping Series are convergent (Limit=0 and the terms get smaller as we approach )

Find the sum of the following telescoping series.

=1 1
EX #3: ——
g{n n+1

EX #4:

DM
:3.||—-
|

[a—

]
L

n+2

= 4
EX #5: .
> gg’n(n-kl)

Repeating decimals

0.222222.... 0.333333 ...

0.242424.... 0.833333....



9-3 Integral Test/ p-series

Integral Test: If f is positive, continuous and decreasing for x > 1 and a, = f(n), then

z. a, and I f(x)dx either both converge or both diverge.
n=1 1

EX #1: Use Integral Test to test for convergence

o 3 n 3

rr=1.n2+1 n=1 1 +l

o :E:p - series . Zip

n=l n

I) Convergesif p=>1
2) Divergesif O<p<l

oo

If p=1. 1t1s called the harmonic series. z,— 1s the divergent harmonic series

n=l

a) i 12 b) ij c) iz

)

n=1 n n=1 n n=l N’ =

EX #3: Review (Test each series for convergence)

& (9 o’ 7
a) Z?[E) by Y

n=1 n=1 I1 + 5

= 6 6 =11
) Lo T s 35



9-4 Comparison of Series

Let 0<a,<b, foralln.
Diverges

n It 2 b, converges, then Z @, also converges. \_) b, WH_) by
an Converges ay

n=1 n=1
o o ! o "

2) It z_an diverges, then z b, also diverges. If Z_an converges and z b, diverges.
n=1 n=1 =1 n=1

. a . . .. .
Suppose thena, >0, b, >0, and lim —* = L, where L is finite and positive. Then the two series > a, and > b,

X—doo
)J'!

either both converge or both diverge.

. a N N ST N .
Assume hmb—” >0 It Z b, converges, then z a, converges. If z b, diverges, then Z a,diverges
R—poo

" n=1 n=1 n=1 n=1
w3 [ imi orkee v ; " " - ; ; ; : - ;
imit test works well when comparing "messy" algebraic series with a p-series. In choosing an appropriate

th

p-series, you must choose one with an n* term of the same magnitude as the n” term of the given series.

Determine Convergence or Divergence for each

— J. = ]_ s 2}:
EX #1: EX#2: Y —— EX #3:
En—s ;n-+14 ésw'
- 1 o - Y
n n-
EX#: Y EX#5: Y —— EX#6: > —
ézﬂﬁ E’Zn’JrS gl’n’+l



9-5 Alternating Series

Let a,>0. The alternating series 2 [:—l:]" a, and z (:—l]"Jrl a, converge

n=1 n=1

if the following two conditions are met.

) Iima,=0 (the bottom is bigger than the top)

n—3ca

2) a,,<a, foralln. (each succeeding term is getting smaller than the preceding term)

#Alternating Series are more likely to be convergent than other series.
= This test does not prove divergence.

#If the condtions are not met, usually bottom not smaller than the top, then the series

diverges by nth term test.

EX #1: Z_(—l)"“i EX #2: Z(—DH”—+1
) n n

n=1

*Alternating Series Remainder

<a

n+l — “n?

involved in approximating the sum § by S, is less than or equal to the first neglected term.

If aconvergent alternating series satisfies the condition a then the absolute value of remainder R |

That is,
S-S,

<a

RH

n+l
EX #3: Approximate the sum of the series by its first 6 terms (S,)

ca (_1)n—1
>

!
n=1 n:

EX#4 : Find the remainder (error).



Absolute Convergence (Alternating Series)

If the series z_‘an‘ converges, then the series z a, also converges.

Definition ofAbsolute and Conditional Convergence

D Z a, 1s absolutely convergent if 2_|a”‘ converges.

Determine if each series is for absolutely convergent, conditionally convergent, or divergent

EX #1: Z 1)“i EX#2: > (-1) L
n=1 n
ri'_n+_l n !
EX#3: > (- EX#4: > (-1
“zl’( " 3n+l ;’( ][ ]
EX#5: Y (-1)2 EX#6: > (-1)' ="

n=1 n=l1 ) Con +l



9-6 The Ratio and Root Test

#++Ratio Test: Let Y a, be a series with nonzero terms

| ... |a
1) ‘a converges absolutely if lim|— <1
n - -

n—rea| ]
an

: e |d . |a
2) z a, diverges if lim|—*4/>1 or lim|—*

- H—pco (1” R—¥oo f.?"

. .. el
3) The ratio test is inconclusive if lim|—=/ =1
H—reo a”
(n+1) .
= (—1)"n’ , An+l , 2 . [(n+1 | )
EX: Z# Im|—=———/=lim-~——— — =lim u =— 5o series Converges
= an n—e n n—sco n—s=| 2p? 2 =
v




##+*Root Test: Let Y a, be a series with nonzero terms

1) z a, converges absolutely if lim ¢ an‘ <l

X—hoo

2) Z,an diverges if limgfla, | >1 or =

X—doa

3) The root test is inconclusive if lim ¢ un| =1

X—oo

— i “112
EX#1: > (-1)'= EX #2:

n
| i n
n=0 n. n=0 3

Ex#3: 3 EX #4: i( 3f1 ]
n

n=1 n=l1



Summary of tests for Series

(f 1s contiuous,

1

Test Series Converges Diverges Comment
= ] This test cannot be used
nth-Term Z a, lima, #0
g n—ses to show convergence.
e N _ a
Geometric Series Z ar" | r| <1 | r| =1 Sum: S =——
n=0 1 —r
Telescoping Z (b, b,..) limb, =L Sum: S=b, - L
=1 n—3oo
. S
p-Series — p>1 p<l
n=1 ! IF
, . = w1 O<a,,<a, Remainder:
Alternating Series (-1)"a, ond lima -0
n=1 ¢ "_)Waﬂ - | RX | < (EN+]_
Integral o [ o s . .
= if I f (x)dx converges | if j flx)dx diverges Remainder:

o = o
positive, and ! F(n)>0 % v is fini 2 " 0<R, < J.f (x)dx
. a=jin)= J. (x)dx 1s finite J. x = oo .
decreasing) lf (x) lf( ) N
w Test 1s inconclusive if
Root Ya, limy| a,| <1 lim4)a,| >1 .
o e n—e lim a"| =1.
n—¥co
Test is inconclusive if
. - . la . . |a
Ratio Ya, lim| | <1 lim| 1| > 1

n—se=
a,

n—oo
a?l

. |a .
lim| 22| =1.
n—co a“

Direct comparison

(a,.b, > 0)

nr

O<a,<bh, and

<
o0
> b, converges
n=1

0<b, <a, and

> b, diverges

n=1

Either show your series
is less than a convergent
series or greater than a

divergent series.

Limit Comparison
(:au ’bn > 0]

lima—" =L>0

n—co

and) b, converges

n=1

and) b, diverges

n=1

If you know your series
is convergent then compare
your series to a convergent

series and vice versa.

10



9-7 Taylor Polynomials and Approximations

Definition of nth Taylor Polynomial and MacLaurin Polynomial (¢=0)

If f has n derivatives at ¢, then the polynomial:
: “(c) (c),
P(x)=(e)+ L) L]

. —C')+T[_x—c') +
1s the nth Taylor Polynomial for f atc.

2! 3! n!

If ¢ =0, then

P,(x)=f(0)+ f;(o)(x—O‘H f”(o)(x—o‘f +L70) (x=0) + oot Doy

n 1 T ......

is called the nth MacLaurin polynomial for f.

. ol . . = [ (" n
Taylor series of f(x) — this is a power series Z_j (I ](x—c)
n=0 n.

EX #1: Find the Taylor Polynomials P, (x) for f(x)=Inx centered at 1.

EX #2: Find the fifth degree MacLaurin Series (centered at ¢=0) for f(x)=sinx.

Find the fourth degree MacLaurin Series for each.

EX#3: f(x)=cosx. EX#4: f(x)=¢

EX #5: Find the fourth degree Taylor Polynomial for f(x) =sinx centered at ¢ = %

11



Formulas for sign changes

_ n(ns1) /
(-1) P =t——++——++

) fn+1]lfn+2:]’;’f

(-1) 2 ——++

_ An+2)(n+3 ]I/:

(—1) 2=t ——t+——
) (n+3) rr+-—1::1§;"

(—1) ot ——

12



9-8 Power Series

When finding the interval of convergence we use either Geometric Series Test, Root Test or Ratio Test.

Find the interval of convergence, radius of convergence and the center for each example below.

EX#1: Y 3(x-2)

n=0

interval of convergence :

radius of convergence :

center :

interval of convergence :

radius of convergence :

center :

oo n

EX#: Y

n=1 h

interval of convergence :

radius of convergence :

center :
Exsg: 308
= u=ﬂ. n- 15”

interval of convergence :

radius of convergence :

center :

13



Special Cases

When finding the interval of convergence :

If lim| | =0 then the power series converges from (—eo, o).

R—¥ea

If lim| | = o then the power series converges at the center only.

- ! - 9 n - _ n
Exss: 3 Exs: 37
n=0 3" n=0 n T
I - o} n+l 31 _ ? n+l |
lim (n+1) (,:;L ) : ”‘ lim x ) S \,,‘
pu 3 n)(x+9)'| ==l (n+1)! (x=7)
9 ~7)
lim (n+1)(x+9) = oo lim[x ')‘:0
n—#eo h n—e=|  Jp 4 ]_
Never less than 1. Always less than 1.
Converges at center —9 only. Converges always. (j—oo,oo]

interval of convergence : Converges at center —9 only interval of convergence: —eo<x<ee

radius of convergence: 0 radius of convergence: oo

center: —9 center: 7

14



9-9 Representation of Functions by Power Series

- a | a -
z_ ar"=——,|rl<1 We will work backward and convert —— to Z_alr".
n=0 1-r l-r n=0

. a,
There are two techniques to convert

to a power series.
—r
; . . . a
1) Rewrite function to look like ——.
—r

2) Use Long Division

Werite the power series and find the interval of convergence for each example below.

EX#1: f(x)=s—. c=0 EX#2: f(x)=——. c=5

15



Power Series for Elementary Functions

Function

1 =1—(x=1)+(x=1) = (x=1) +(x=1)" =+ (=1)" (x=1)" + -
N .

.1 =l-x+x - +xt - (L) X+

I+x

fi— =l+x+x+ 0+ A+ X+

l-x

PPN € Vi e VN VMV 2 SO

2 3 4 n

- 2 3 x4 XS - n
e =ldx+—+—+—+—+ -+ —+-
20 31 41 5! n!

Interval of Convergence

O<x<?2

—l<x<l

—l<x<l

D<x<2

—co L X< oo

16



Power Series for Elementary Functions (... continued)

Function Interval of Convergence
. 3 x.’» XS x? xQ B (_1)" x?n—l B
siny =x——+———+——-+-—-———+ —co< X <oo
a5 79l (2n+1)!
rl x4 xﬁ xS [_l)” xlrr
cosy =l—-—+——"—F—— -+ - —co< x< oo
21 4! 6! 8! (2m)!
3 5 7 9 f n_2n+l
x x x x -1) x
arcranx:x——+———+——---+L+--- —-1<x<1
3 5 7 9 2n+1
3 5 1 7 f 2n+l
. X 1-3x 1-3-5x 2n)\x
arcsinx = x + + —+ L+ —1<x<1
2.3 2.4.5 2.4.6-7 [gﬂn!)‘(gnJrl)

k(k=1)x* k(k=1)(k=2)x" k(k—1)(k—2)(k-3)x*
2! 3! i 4!
*The convergence at x = %1 depends on the value of %.

+--- —l<x<I¥

(1+x)" =1+ kx+

17



9-10 Taylor and MacLaurin Series

We will find other series by adjusting known series. We can adjust by adding/subtracting,

multiplying/dividing, replacing(substituting) or taking a derivative/integral.

Taylor Series to memorize :

. ¥ ox x X
siny =x——+——"—+—— ...
357 9

"

. XX
e =l+x+—+—+--
21 3

2 4 6
X X

EX #1: Given cosx =1-2 +2 -2 4

21 41 6!
Find each:
We can multiply:

XCOsX =

We can substitute:

cos2x =

We can differentiate/integrate:

sinx =

We can combo:

sin 3x =

=l-x+x"—x"+-

EX #2: Given

l+x

4 6 8
X X X

X
cosx =l-—+"——-"—+

21 41 6! 81

1 >
—— =l+x+x7+x7+x
l-x

. . d 1
Find arctan x (Hmt: —arctan x = - )
dx 1+x-

18



2 3

EX #3: Given e.'“:1+x+'q—r+%+---

4 8 12

EX#4: Given g(x)=l+—+—+>—+
6! 121 18!

. . 5 . 5 1—cos2x
EX: Find sin"x (sin"x= —

)

2 4 6

cos2x =1- + - t..
21 41 6!
2 - A “ 6
I —cos2x :[ x) (2%) +(_x) _
20 41 6l
l—cos2x  (2x)° (2x)° (2x)
2 220 2.4 2.6

1
Find je dx
(1]

Find x* - g(xj' )

19



Lagrange Error Bound
fn+1 (Z) (x _ C)""'l

(n+1)!
£ (z) is the MAXIMUM of (n+1)" derivative of the function

Error :‘f(x}—JPri (x]‘ <

R, (x) where R (x)<

L

EX: Given the 4th degree Maclaurin Series for cos.x.
2 4

cosx=1-——+—....
21 4!

Use Maclaurin Series to approximate value of 005(0.1).

2 4
- (0,')1') + (Gj‘) =0.9950041667 (Actual value of cos(0.1)= 0.9950041653)

P,(.1)=1

EX : Lagrange Error Bound at 0.1
f*(x)=—sinx (The MAXIMUM of —sinx is 1)

(1)(0.1-0Y’

|cosx—P,(x) < 5

=0.000000083 (Actual gap: 0.0000000014)

EX#1: f(1)=2, f(1)=5, f()=7, f"(1)=12
a) Write a 2nd Degree Taylor Polynomial

b) Use Taylor Polynomial to approximate 1.1 ¢) Lagrange Error Bound at 1.1

sin x

87. The function f has derivatives of all orders for all real numbers, and f”](x] = ¢ . If the third-degree Taylor
polynomial for f about x = 0 is used to approximate f on the interval [0, 1]. what is the Lagrange error bound
for the maximum error on the interval [0, 1] ?

(A) 0.019 (B) 0.097 (C) 0.113 (D) 0.399 (E) 0417

20



10-2 Plane Curves and Parametric Equations

Parametric equations : equations in terms of a third variable (usually ¢ or 8)

EX #1: Graph x=¢"—4 V= % , —2<t<3 and show direction.
4
t | x|y 4
) 3
-] 2
0 1
1 S 43210 123245
2 -1
3 2
I 3
— is the change in x over time. A
dt o
% is the change in y over time. “‘"T
dy . )
I is the change y over change in x. (slope)
EX#2: Given x=r"-4  y=- Find ZF and ® and 2 at r=-1
2 dt dt dx

EX #3: Given x=3"-T7t y=¢" Findéand@andﬂat r=2.
dt dt dx

21



10-3 Parametric Equations

If a smooth curve ¢ is given by the equation, x= f(z) and y= g(¢), then the slope of ¢ at (x,y) is

b/ (dv) d [ d }’J
. }j"/ 2 ! il 3 1 2 ’ m 2
Sa'opg:ﬁ:—’"ff , @;to Also, d%_i(d})d{ dx d_‘;:i d": _dndv)
dx dx, dt dx”  dx\ dx dx dx®  dx\ dx” dx
' dt dt

EX#1: x=+/t y= i(e‘l — 4) t =0 Tind slope. concavity, and speed at (2 %)

== =Arclength in parametric form :

If a smooth curve ¢ is given by x= f () and y = g(r) such that ¢ does not intersect on the interval a <7 <b

(except possibly at the endpoints) then the arclength of ¢ over the interval is given by

ST BT o T

Also can be used to find distance particle travelled along the curve.

=+ =Reminder : Arclength in function form :

5 :ji ’1+(f’(x):)2 dx (Notes 74)

EX #2: Find arclength of x=2sint and y=2cost [O, 2.11']

22



Using Parametric Equations to solve Rectilinear Motion problems
EX#1: 1997#1 =0 tot=6  x(t)=3cos(rr) y(t)="5sin(7z)
a) Find the position of the particle when 7= 2.5. b) Sketchfrom r=0 tot=06.

¢) The # of times it passes thru (0, 5) d) Find velocity vector

e) Distance travelled fromr =125 t0o t =1.75.

EX #2: 2000 #4 Positionatr=11s(2,6) Velocity vector at any time ¢ >0 is given by (l—iﬂ 2+ i)
t- I

a) Find acceleration vector at ¢ = 3. b) Find position at t = 3.

. . . dy
¢) Whenis slope =8 d) lim—=

1= (X
~ dx ‘3 d}' . 2 ‘e . -
EX #3: 2001#1 d—:cos[r ). d—:.%sm[r ), 0<1<3  Atr=2 positionis (4,5).
t ' t v

a) Equation of tangent line at (4, 5) b) Findspeedat r=2
¢) Distance travelled from 0 <t <1 d) position at = 3.

23



10-4 Polar Coordinates and Polar Graphs

Equations to convert rectangular to polar and polar to rectangular

X
EX #1: Convert each

a) (5.-12) R—-P

polar to rectangular

Rectangular: (x, y) x=rcosf

Polar: (r, 0) y=rsinf

b) (—37—R] P—-R

6

EX #2: Graph r=1+2cos#

180°=T0

0% as0’=0, 21

rectangular to polar

X+y=r

6= tan_l(l]
X

24



EX#1: Given r=35sin(26).

@) Find & a9="%.
d6

¢) Find 2 atg=1%
6

EX#2:

@) Find T aro-Z.
d 6

Polar Equations

Remember :

x=rcosfd and

\/\

r=235gin(2H)

Given r=2+4cos8 . find the following:

IV N b) Find &
J 0

III \'\

|

y

d) Find

de 6

:m\\':aa
- 5

~r=2+4c0s(0) )

'"_\ o

|

d) Find

dy

at Q:E.
dx

=rsind

dx

at 9_
6

6

25



10-5 Area and Arclength in Polar Coordinates

*%* Area in Polar Coordinates

If f is continuous and nonnegative on the interval [a, ,8} , then the area of the region bounded by the

graphs of r= f(0) between the radial lines 6 = & and 6 = f3 is given by

B B
Az%f[f(e)]2 do =l==l=*A:%Ir3 deé

EX#1: r=3cos30 Find area of one leaf.

S_——"
A

i r=3cos(30)

26



10-5 Area and Arclength in Polar Coordinates

# % *Area in Polar Coordinates

If f is continuous and nonnegative on the interval [oe . ﬁ] , then the area of the region bounded by the
graphs of r= f(6) between the radial lines = & and 6 = f3 is given by

14 . 17,
A:El.[f((%)] d6 ***Azi‘llr“ a8

o

EX#1: r=3cos30 Find area of one leaf.

Fr=3cos(30)

EX#2: r=1-2sin0

e~

21

r 1-3sin(6) r = 112sin(6) 0)

Area of the Inner Loop : Area of the whole figure : Area of the Outer Loop :

r=1-2sin

EX#3: r=4+4cos@ r=2

a) Find area of region R. 7= 4+4cos0 b) Find area of region S.

-]
| I
t

o

27



Hooke's Law

Hooke'sLaw: The Force required to compress or stretch a spring (within its elastic limits) is

proportional to the distance d that the spring is compressed from its original length.

F=kd
W:jlikxdx

EX#1: A force of 750 Ibs compresses a spring 3 inches from its natural length of 15 inches.

Find the work done in compressing the spring an additional 3 inches.

EX#2: A force of 10 1bs is required to stretch a spring 4 inches beyond its natural length. Assuming
(1997 MC) Hooke's Law applies, how much work is done in stretching the spring from its natural length

to 6 inches beyond its natural length.

28



Finding Area Using Limits

) o b—a \(b—-a .. o
Area =1lim Z f (a + i i =interval, »n=# of subdivisions
n—oo n H
i=1

E S —

height widih

Ar‘-"a:(})_a)[f[ﬂ+b;a-l)+f‘(a+b_a-2]+f(a+b_a -3)+ ......... f '(aer_a -nﬂ
n n n n n

Summation Formulas
. = 1 n ['n + l)
_ ~ . P\
1) Zl’_c—m 2) Z_r— 5
P

n J o) 1 n 2 \2
3) 2 I_2:.1*1[_.1*1+l)_(_:?1+1) 4 Z paon (n+1)

i=1 6 i=1 4
Summation Properties

S) i [:ﬂs th)= i 4q; ii- b, 6) i ka; = ki_ a,, where k is a constant
i=1 i=1 i=1

= i i=1 i=1

EX#1: f(x)=x" [0,1} n subdivisions EX#2: f(x)=x’ [1,3] n subdivisions

. . ! 2 n
EX#3: 1988 MC #41 im —| ,—+.,—+..... — |=
n—3co r'l n ” r'l

1

A) %j%dx B) j&dx ) jxdx D) jxdx E) ij\/;dx

" " 5 , 3 5 3
EX#4: lim :HH:] +(3+i) +[3+§] o +(3+5) }:
n—= R n n n n
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