11.1 SEQUENCES

While the idea of a sequence of numbers, ay,as,as,... is straightforward, it is useful to
think of a sequence as a function. We have up until now dealt with functions whose domains
are the real numbers, or a subset of the real numbers, like f(x) = sinz. A sequence is a
function with domain the natural numbers N = {1,2,3, ...} or the non-negative integers,
Z7° =1{0,1,2,3,...}. The range of the function is still allowed to be the real numbers; in
symbols, we say that a sequence is a function f:N — R. Sequences are written in a few
different ways, all equivalent; these all mean the same thing:

ay,ao,asg, ...
{an}:il
{f(n)},

As with functions on the real numbers, we will most often encounter sequences that

can be expressed by a formula. We have already seen the sequence a; = f(i) =1 — 1/2°,



and others are easy to come hy:

f(n) =sin(n7/6)
£(i) = (1 — I;Ez +2)

Frequently these formulas will make sense if thought of either as functions with domain R
or N, though occasionally one will make sense only for integer values.
Faced with a sequence we are interested in the limit

lim f(z) = lim a;.
T— 00 T— 00

We already understand

lim f(x)

T— 00

when z is a real valued variable: now we simply want to restrict the “input” values to be
integers. No real difference is required in the definition of limit, except that we specify, per-

haps implicitly, that the variable is an integer. Compare this definition to definition 4.10.4.

DEFINITION 11.1.1 Suppose that {a,},—, is a sequence. We say that le an =L
n—0oo

if for every € > 0 there is an N > 0 so that whenever n > N, |a, — L| <e. If ]Lm ap =1L
N— 00

we say that the sequence converges, otherwise it diverges. O

If f(7) defines a sequence, and f(x) makes sense, and lim f(z) = L, then it is clear
o0

that lim f(i) = L as well, but it is important to note that the converse of this statement
i—+oo
is not true. For example, since lim (1/z) =0, it is clear that also lim (1/¢) = 0, that is,
T— 00 =00

the numbers

111111

1’273°4°57°6"
get closer and closer to 0. Consider this, however: Let f(n) = sin(nw). This is the sequence

sin(0m), sin(1m), sin(27), sin(37),... = 0,0,0,0,. ..

since sin(nm) = 0 when n is an integer. Thus lim f(n) = 0. But lim f(z), when z is
n—+00 T—00

real, does not exist: as x gets bigger and bigger, the values sin(xm) do not get closer and



closer to a single value, but take on all values between —1 and 1 over and over. In general,

whenever you want to know lim f(n) you should first attempt to compute lim f(z),
n—od IT—+020
since if the latter exists it is also equal to the first limit. But if for some reason lim f(z)
T—r 20
does not exist, it may still be true that lim f(n) exists, but you'll have to figure out
n—oo

another way to compute it.
It is occasionally useful to think of the graph of a sequence. Since the function is
defined only for integer values, the graph is just a sequence of dots. In figure 11.1.1 we see

the graphs of two sequences and the graphs of the corresponding real functions.
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Figure 11.1.1  Graphs of sequences and their corresponding real functions.
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Not surprisingly, the properties of limits of real functions translate into properties of

sequences quite easily. Theorem 2.3.6 about limits becomes

THEOREM 11.1.2 Suppose that lim a, = L and lim b, = M and k is some constant.
n—oo n— oo

Then
lim ka,, =k lim a, = kL

n—r o0 n—oo

lim (ap +b,) = lim ap, + lim b, =L+ M
n—oo n—00 n—oo

lim (ap, —by) = lim ap, — lim b, =L - M
n—co n—00 n—oo

lim (apb,) = lim a, - lim b, = LM
n— 0o i n—00

—0o
an limpy0can, L .
n]i}H:::lo b_ m ﬁ‘ lf i‘lf 1s not 0



Likewise the Squeeze Theorem (4.3.1) becomes

THEOREM 11.1.3 Suppose that a, < b, < ¢, for alln > N, for some N. If le anp =
mn o0

lim ¢, = L, then lim b, = L. [ ]

T— 00 n— 3

And a final useful fact:

THEOREM 11.1.4  lim |a,| =0 if and only if lim a, =0. ]

— o0 — o0

This says simply that the size of a, gets close to zero if and only if a, gets close to

ZeTo.,

o0
EXAMPLE 11.1.5 Determine whether { } converges or diverges. If it con-
n=>0

verges, compute the limit. Since this makes sense for real numbers we consider

n+1

lim = lim 1— 1 =1-0=1
T—oo T T—+00 r+1
Thus the sequence converges to 1. |

o
EXAMPLE 11.1.6 Determine whether {]n_n} converges or diverges. If it con-

n n=1

verges, compute the limit. We compute

Inx IVE

lim — = lim - =0,
using L'Hopital’s Rule. Thus the sequence converges to 0. O

EXAMPLE 11.1.7 Determine whether {(—1)"},2, converges or diverges. If it con-
verges, compute the limit. This does not make sense for all real exponents, but the sequence
is easy to understand: it is

1,—1,1,-1,1...

and clearly diverges. O

EXAMPLE 11.1.8 Determine whether {(—1/2)"},;2 converges or diverges. If it con-
verges, compute the limit. We consider the sequence {|(—1/2)" |}, = {(1/2)" }5=,- Then

m (1) = tim & =0
rooo\2)  ame28

so by theorem 11.1.4 the sequence converges to 0. O



EXAMPLE 11.1.9 Determine whether {(sinn)/y/n};”; converges or diverges. If it

converges, compute the limit. Since |sinn| < 1, 0 < |sinn/y/n| < 1/y/n and we can use

theorem 11.1.3 with a,, = 0 and ¢;, = 1/y/n. Since lim a,, = lim ¢, =0, lim sinn/yn =
n— oo n—oo n— oo

0 and the sequence converges to 0. 0

EXAMPLE 11.1.10 A particularly common and useful sequence is {r" }._,, for various
values of r. Some are quite easy to understand: If r = 1 the sequence converges to 1 since
every term is 1, and likewise if r = 0 the sequence converges to 0. If » = —1 this is
the sequence of example 11.1.7 and diverges. If r > 1 or r < —1 the terms r" get large
without limit, so the sequence diverges. If 0 < r < 1 then the sequence converges to 0.
If -1 < r < 0 then |[r"| = |r|" and 0 < |r| < 1, so the sequence {|r|"};2, converges to
0, so also {r"}>°, converges to 0. converges. In summary, {r"} converges precisely when

—1 < » < 1 in which case

lim ™ =

{0 if -1<r<l1

1 ifr=1 O

Sometimes we will not be able to determine the limit of a sequence, but we still would
like to know whether it converges. In some cases we can determine this even without being
able to compute the limit.

A sequence is called increasing or sometimes strictly increasing if a; < a;4; for
all 7. It is called non-decreasing or sometimes (unfortunately) increasing if a; < a;41
for all 2. Similarly a sequence is decreasing if a; > a;11 for all 7+ and non-increasing if

a; = a;yq for all 7. If a sequence has any of these properties it is called monotonic.

EXAMPLE 11.1.11 The sequence

{5
2t f._, 2

.....

is increasing, and

is decreasing. O

A sequence is bounded above if there is some number N such that a,, < N for every
n, and bounded below if there is some number N such that a,, > N for every n. If a
sequence is bounded above and bounded below it is bounded. If a sequence {a,}.” is
increasing or non-decreasing it is bounded below (by ap), and if it is decreasing or non-
increasing it is bounded above (by ag). Finally, with all this new terminology we can state

an important theorem.



THEOREM 11.1.12 If a sequence is bounded and monotonic then it converges. [ |

We will not prove this; the proof appears in many calculus books. It is not hard to
believe: suppose that a sequence is increasing and bounded, so each term is larger than the
one before, yet never larger than some fixed value N. The terms must then get closer and
closer to some value between ap and N. It need not be N, since N may be a “too-generous”

upper bound; the limit will be the smallest number that is above all of the terms a;.

EXAMPLE 11.1.13  All of the terms (2' — 1)/2" are less than 2, and the sequence is
increasing. As we have seen, the limit of the sequence is 1: 1 is the smallest number that
is bigger than all the terms in the sequence. Similarly, all of the terms (n+1)/n are bigger
than 1/2, and the limit is 1: 1 is the largest number that is smaller than the terms of the
sequence. m|

We don’t actually need to know that a sequence is monotonic to apply this theorem—
it 1s enough to know that the sequence is “eventually” monotonic, that is, that at some
point it becomes increasing or decreasing. For example, the sequence 10, 9, 8, 15, 3, 21, 4,
3/4, 7/8, 15/16, 31/32, ... is not increasing, because among the first few terms it is not.
But starting with the term 3/4 it is increasing, so the theorem tells us that the sequence
3/4,7/8,15/16,31/32, ... converges. Since convergence depends only on what happens as
n gets large, adding a few terms at the beginning can’t turn a convergent sequence into a

divergent one.

EXAMPLE 11.1.14  Show that {n'/™} converges.

We first show that this sequence is decreasing, that is, that n'/™ > (n+1)Y (n+1) " Consider
the real function f(z) = =" when z > 1. We can compute the derivative, f'(z) =
zt ?(1=Inz)/2%, and note that when = > 3 this is negative. Since the function has negative
slope, n'/™ > (n+ 1}1/{“"'1} when n > 3. Since all terms of the sequence are positive, the
sequence is decreasing and bounded when n > 3, and so the sequence converges. (As it
happens, we can compute the limit in this case, but we know it converges even without

knowing the limit; see exercise 1.) O

EXAMPLE 11.1.15 Show that {n!/n"} converges.

Again we show that the sequence is decreasing, and since each term is positive the sequence
converges. We can’t take the derivative this time, as =! doesn’t make sense for x real. But
we note that if a,.1/an <1 then anyy < @y, which is what we want to know. So we look

at apy1/ap:

ant1 _ (m+ 1! 2" _ (n+1)! n" _n+1 n n_ n ﬂ<1
n+1 - :

an  (n+1)"t n! n! (n+1)"1 n+1



(Again it is possible to compute the limit; see exercise 2.)

Erercises 11.1.

1.

[ |

. Determine whether {

1/x

Compute lim =

T—ro0

. nl
Use the squeeze theorem to show that lim — = 0.
n—oo 117

Determine whether {v/n + 47 — \/n},— converges or diverges. If it converges, compute the
limit. =

a [=u]
. 1 . . ..
Determine whether {%} converges or diverges. If it converges, compute the limit.
n
n=>0

=

converges or diverges. If it converges, compute the

n+47 }m
vnZ + 3n

n=1

limit. =
2?’3

oo
. Determine whether {—} converges or diverges. =

|
LEl n=»0



