11.2 SERIES

While much more can be said about sequences, we now turn to our principal interest,
series. Recall that a series, roughly speaking, is the sum of a sequence: if {a,},—, is a

sequence then the associated series is

o
Zan=&0+a1 +ag +---
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Associated with a series is a second sequence, called the sequence of partial sums

—_—
{Sﬂ}n=0'
n
i=0
So
sp =ap, S =ap+ay, S =ag+a;+ as,

A series converges if the sequence of partial sums converges, and otherwise the series

diverges.
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EXAMPLE 11.2.1 Ifa, = k2", Z ay is called a geometric series. A typical partial
n=>0

sum is

spn=k+kr+k®+k*+-  Fhkz"=k(l+z+2"+2°+.- +2").



We note that

sn(l—z)=k(l+z+22 +2° + - +2")(1 —2)
=k(l+z+22+23 4+ +2e"—k(l+z+22+23+ -+ 2" 1 +2")2
=k(l+z+z?+22+ - +2"—2x—2? -2 — .. — g™ — 2"
= k(1 — 2"™t1)
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sn(l—z) = k(1 —2"h)

1 —gntl
sn =k l1—=
If |z] <1, lim 2" =0so
n—oc
1 — gl 1
lm s, = lim k—— =k .
n— o0 N—00 1—mx l1—=x

Thus, when |z| < 1 the geometric series converges to k/(1 — x). When, for example, k =1

and r =1/2:

1—(1/2)“+1:2”+1—1:2_i and Z

T2 on on 1—1/2

We began the chapter with the series
v L
n=12n.

namely, the geometric series without the first term 1. Each partial sum of this series is 1
less than the corresponding partial sum for the geometric series, so of course the limit is
also one less than the value of the geometric series, that is,

oo 1
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n=1

It is not hard to see that the following theorem follows from theorem 11.1.2.

THEOREM 11.2.2 Suppose that > a, and ) b, are convergent series, and ¢ is a

constant. Then

1. E cay, is convergent and E Clip = € E ty



2. Z(an + by,) is convergent and Z(an +bn) = Z ty + Z by.

The converses of the two parts of this theorem are subtly different. Suppose that
> ay diverges; does > cay, also diverge if ¢ is non-zero? Yes: suppose instead that > ca,
converges; then by the theorem, Y "(1/¢)ca, converges, but this is the same as >  ay, which
by assumption diverges. Hence > ca, also diverges. Note that we are applying the theorem
with a, replaced by ca,, and ¢ replaced by (1/¢).

Now suppose that > a, and > b, diverge; does > (a, + by) also diverge? Now the
answer is no: Let a,, = 1 and b, = —1, so certainly Y a,, and ) b, diverge. But >_(a, +
bp) =3 (1+—1) = 50 = 0. Of course, sometimes  (a, + b,) will also diverge, for
example, if a, = b, =1, then ) (a, +by) =D (1 + 1) =>_ 2 diverges.

In general, the sequence of partial sums s, is harder to understand and analyze than
the sequence of terms ay, and it is difficult to determine whether series converge and if so

to what. Sometimes things are relatively simple, starting with the following.

THEOREM 11.2.3 If >’ a, converges then lim a, = 0.

n—oo

Proof. Since > a, converges, lim s, = L and lim s, ; = L, because this really says
n—oo n—o0

the same thing but “renmumbers” the terms. By theorem 11.1.2,

lim (sp —sp1) = lim s, — lim s, 1 =L—L=0.
n— oo N—ro0 N—20

But
sn—sn_l=(ag+a1+ag+---+an}—(ag+a1+ag+---+an_1)=an:

so as desired lim a, = 0. [ |
n—o0

This theorem presents an easy divergence test: if given a series Y a,, the limit lim a,
n—oo

does not exist or has a value other than zero, the series diverges. Note well that the

converse is not true: If lim a, = 0 then the series does not necessarily converge.

n— oo
o0
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EXAMPLE 11.2.4 Show that » ——— diverges.
=t 1
We compute the limit:
nlgrclo 1 1#0.

Looking at the first few terms perhaps makes it clear that the series has no chance of

converging:
1 2 3 4
§+§+E+S+”'



will just get larger and larger; indeed, after a bit longer the series starts to look very much
like---+1+14+1+1+---, and of course if we add up enough 1’s we can make the sum
as large as we desire. O

o0
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EXAMPLE 11.2.5 Show that E — diverges.
n
n=1

Here the theorem does not apply: lim 1/n = 0, so it looks like perhaps the series con-
n—rod

verges. Indeed, if you have the fortitude (or the software) to add up the first 1000 terms

vou will find that
1000

Ejimrm,

n=1
so it might be reasonable to speculate that the series converges to something in the neigh-
borhood of 10. But in fact the partial sums do go to infinity; they just get big very, very
slowly. Consider the following:

4o +r4r>1l+s+r+a=1+5+2
2 3 4 2 4 4 2 2
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and so on. By swallowing up more and more terms we can always manage to add at least

another 1/2 to the sum, and by adding enough of these we can make the partial sums as

big as we like. In fact, it’s not hard to see from this pattern that
P S .
2 3 2n 2’

so to make sure the sum is over 100, for example, we’d add up terms until we get to
2198 that is, about 4 - 10°° terms. This series, > (1/n), is called the harmonic
series. O

around 1/

Ezercises 11.2.
0 2
n
1. Explain why Z 55 diverges. =
— 2n? +1

— 3
2. Explain why E 5T diverges. =
n=1 2 / + 14

(=]
3. Explain why Z 3 diverges. =
n
n=1
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