11.3 THE INTEGRAL TEST

It is generally quite difficult, often impossible, to determine the value of a series exactly.
In many cases it is possible at least to determine whether or not the series converges, and
so we will spend most of our time on this problem.

If all of the terms a, in a series are non-negative, then clearly the sequence of partial
sums s, is non-decreasing. This means that if we can show that the sequence of partial
sums is bounded, the series must converge. We know that if the series converges, the
terms a, approach zero, but this does not mean that a, > a,+1 for every n. Many useful
and interesting series do have this property, however, and they are among the easiest to

understand. Let’s look at an example.
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EXAMPLE 11.3.1 Show that Z —; converges.
n=1 "

The terms 1/n? are positive and decreasing, and since lim 1/2z% = 0, the terms 1/n”
T—0o0

approach zero. We seek an upper bound for all the partial sums, that is, we want to
find a number N so that s, < N for every n. The upper bound is provided courtesy of
integration, and is inherent in figure 11.3.1.

The figure shows the graph of y = 1/2” together with some rectangles that lie com-
pletely below the curve and that all have base length one. Because the heights of the
rectangles are determined by the height of the curve, the areas of the rectangles are 1/12,
1/22, 1/32, and so on—in other words, exactly the terms of the series. The partial sum
sy is simply the sum of the areas of the first n rectangles. Because the rectangles all lie

between the curve and the r-axis, any sum of rectangle areas is less than the corresponding
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Figure 11.3.1 Graph of y = 1/.1:Q with rectangles.

area under the curve, and so of course any sum of rectangle areas is less than the area
under the entire curve, that is, all the way to infinity. There is a bit of trouble at the left
end, where there is an asymptote, but we can work around that easily. Here it is:

1 1 1 1 " 1

recalling that we computed this improper integral in section 9.7. Since the sequence of

partial sums s,, is increasing and bounded above by 2, we know that li}m sp =L <2, and
T o0

so the series converges to some number at most 2. In fact, it is possible, though difficult,
to show that L = 72 /6 ~ 1.6. m|

We already know that > 1/n diverges. What goes wrong if we try to apply this
technique to it? Here's the calculation:

1 1 1 1 "1 <1
Sp=—A4+ -4+ -4+ <14 —dr <1+ —dr=1+ .
123 n LT 1T

The problem is that the improper integral doesn’t converge. Note well that this does
not prove that > 1/n diverges, just that this particular calculation fails to prove that it
converges. A slight modification, however, allows us to prove in a second way that > 1/n

diverges.

EXAMPLE 11.3.2 Consider a slightly altered version of figure 11.3.1, shown in fig-
ure 11.3.2.
The rectangles this time are above the curve, that is, each rectangle completely contains
the corresponding area under the curve. This means that
1 11 1 nt n+1
sn—T+§+§—|—---—|—£>£ Ed:r:—]n:r:l = In(n + 1).

As n gets bigger, In(n + 1) goes to infinity, so the sequence of partial sums s, must also

go to infinity, so the harmonic series diverges. O
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Figure 11.3.2 Graph of y = 1/ with rectangles.

The important fact that clinches this example is that

lim —dxr = 0o,

1
[ —dr = oc.
i I

So these two examples taken together indicate that we can prove that a series converges

which we can rewrite as

or prove that it diverges with a single calculation of an improper integral. This is known
as the integral test, which we state as a theorem.

THEOREM 11.3.3 Suppose that f(z) > 0 and is decreasing on the infinite interval

[k, o0) (for some k = 1) and that a,, = f(n). Then the series Z an converges if and only

n=1
o0
if the improper integral / flz) dz converges. [ |
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The two examples we have seen are called p-series; a p-series is any series of the form
Z 1/nP. It p <0, lim 1/n? # 0, so the series diverges. For positive values of p we can
Ti— 00

determine precisely which series converge.

THEOREM 11.3.4 A p-series with p > 0 converges if and only if p > 1.

Proof. We use the integral test; we have already done p = 1, so assume that p # 1.

/ —dr = lim = lim - —
1 xP D—}-:so]_—pl D—}-:;ol—p l—p

If p>1then1—p <0 and L}:'Lm D'"P =0, so the integral converges. If 0 < p < 1 then
o0

1—p>0and lim D'"P = oo, so the integral diverges. [ |
D—0o
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EXAMPLE 11.3.5 Show that Z —; converges.
n

n=1

We could of course use the integral test, but now that we have the theorem we may simply

note that this is a p-series with p > 1. |
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EXAMPLE 11.3.6 Show that Z —; converges.
n=1 "

We know that if Z 1/n* converges then Z 5/n* also converges, by theorem 11.2.2. Since

n=1 n=1
Z 1/ n? is a convergent p-series, Z 5/?14 converges also. O
n=1 n=1
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EXAMPLE 11.3.7 Show that Z 5 diverges
3. 2 Tn X
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This also follows from theorem 11.2.2: Since Z —— is a p-series with p = 1/2 < 1, it
n=1

N
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diverges, and so does E — O

Since it is typically difficult to compute the value of a series exactly, a good approx-
imation is frequently required. In a real sense, a good approximation is only as good as
we know it is, that is, while an approximation may in fact be good, it is only valuable in
practice if we can guarantee its accuracy to some degree. This guarantee is usually easy

to come by for series with decreasing positive terms.

EXAMPLE 11.3.8 Approximate Z 1/ n? to two decimal places.
N
Referring to figure 11.3.1, if we approximate the sum by Z 1/n?, the error we make is
n=1
the total area of the remaining rectangles, all of which lie under the curve 1/z> from z = N
out to infinity. So we know the true value of the series is larger than the approximation,
and no bigger than the approximation plus the area under the curve from N to infinity.
Roughly, then, we need to find N so that

r $2

> 1
f — dx < 1/100.



We can compute the integral:

=1 1
fr Ze =75

so N = 100 is a good starting point. Adding up the first 100 terms gives approximately
1.634983900, and that plus 1/100 is 1.644983900, so approximating the series by the value
halfway between these will be at most 1/200 = 0.005 in error. The midpoint is 1.639983900,
but while this is correct to +0.005, we can’t tell if the correct two-decimal approximation
is 1.63 or 1.64. We need to make N big enough to reduce the gnaranteed error, perhaps to
around 0.004 to be safe, so we would need 1/N =~ 0.008, or N = 125. Now the sum of the
first 125 terms is approximately 1.636965982, and that plus 0.008 is 1.644965982 and the
point halfway between them is 1.640965982. The true value is then 1.64096598240.004, and
all numbers in this range round to 1.64, so 1.64 is correct to two decimal places. We have
mentioned that the true value of this series can be shown to be 72/6 ~ 1.644934068 which
rounds down to 1.64 (just barely) and is indeed below the upper bound of 1.644965982,
again just barely. Frequently approximations will be even better than the “guaranteed”

accuracy, but not always, as this example demonstrates. O



Erercises 11.3.

Determine whether each series converges or diverges.
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