11.7 THE RATIO AND ROOT TESTS

00 5
] n . . . .
Does the series Z = converge? It is possible, but a bit unpleasant, to approach this
n=0
with the integral test or the comparison test, but there is an easier way. Consider what

happens as we move from one term to the next in this series:
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The denominator goes up by a factor of 5, 5"*! = 5. 5™, but the numerator goes up by
much less: (n+1)° = n® + 50 + 100 + 10n* + 5n + 1, which is much less than 5n° when

n is large, because 5n* is much less than n°. So we might guess that in the long run it



begins to look as if each term is 1/5 of the previous term. We have seen series that behave

like this:
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a geometric series. So we might try comparing the given series to some variation of this
geometric series. This is possible, but a bit messy. We can in effect do the same thing,
but bypass most of the unpleasant work.

The key is to notice that
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This is really just what we noticed above, done a bit more officially: in the long run, each
term is one fifth of the previous term. Now pick some number between 1/5 and 1, say 1/2.
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then when n is big enough, say n > N for some N,
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So a1 < an/2, anyo < any1/2 < an /4, ania < ans9/2 < anyi1/4 < an /8, and so
on. The general form is ay. 1 < ay/ 2k So if we look at the series
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its terms are less than or equal to the terms of the sequence
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So by the comparison test, Z ay 1k converges, and this means that Z ay, converges,
k=0 n=0
since we've just added the fixed number ap +a1 +---+an_1.

Under what circumstances could we do this? What was crucial was that the limit of
@pi1/an, say L, was less than 1 so that we could pick a value r so that L < r < 1. The
fact that L < r (1/5 < 1/2 in our example) means that we can compare the series > a,
to >_r", and the fact that r < 1 guarantees that > _ " converges. That’s really all that is



required to make the argument work. We also made use of the fact that the terms of the
series were positive; in general we simply consider the absolute values of the terms and we
end up testing for absolute convergence.

THEOREM 11.7.1 The Ratio Test  Suppose that lim |anq1/a,| =L. L <1
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the series > a, converges absolutely, if L > 1 the series diverges, and if L = 1 this test

gives no information.

Proof. The example above essentially proves the first part of this, if we simply replace
1/5 by L and 1/2 by r. Suppose that L > 1, and pick r so that 1 < » < L. Then for
n > N, for some N,
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This implies that |ay x| > :-*‘l“|a;\,r

, but since r > 1 this means that kll;‘ngo lay x| # 0, which
means also that nl'ingo a, # 0. By the divergence test, the series diverges.

To see that we get no information when L = 1, we need to exhibit two series with
L = 1, one that converges and one that diverges. It is easy to see that Y 1/n? and 3" 1/n
do the job. [

EXAMPLE 11.7.2 The ratio test is particularly useful for series involving the factorial

oo
function. Consider Z 5" /nl.
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Since 0 < 1, the series converges. O
A similar argument, which we will not do, justifies a similar test that is occasionally

easier to apply.

THEOREM 11.7.3 The Root Test  Suppose that lim |a,|"/" = L. If L < 1 the
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series »  ay converges absolutely, if L > 1 the series diverges, and if L = 1 this test gives

no information. ]

The proof of the root test is actually easier than that of the ratio test, and is a good

exercise.
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The ratio test turns out to be a bit difficult on this series (try it). Using the root test:
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Since 0 < 1, the series converges. O

The root test is frequently useful when n appears as an exponent in the general term
of the series.



Ezxercises 11.7.
1. Compute lim |any1/an| for the series 3 1/n%.
n—Fod
2. Compute lim |anti/an| for the series > 1/n.
n—Fod
3. Compute lim |an|"™ for the series 3 1/n
n—Fod

4. Compute lim |an|"™ for the series 3 1/n.
Nn—roo

Determine whether the series converge.

9. Prove theorem 11.7.3, the root test.



