11.8 POWER SERIES

Recall that we were able to analyze all geometric series “simultaneously” to discover that

if |z| < 1, and that the series diverges when |z| > 1. At the time, we thought of z as an
unspecified constant, but we could just as well think of it as a variable, in which case the

series

is a function, namely, the function k/(1 — ), as long as || < 1. While k/(1 — z) is a rea-
sonably easy function to deal with, the more complicated ) kz™ does have its attractions:
it appears to be an infinite version of one of the simplest function types—a polynomial.
This leads naturally to the questions: Do other functions have representations as series?
Is there an advantage to viewing them in this way?

The geometric series has a special feature that makes it unlike a typical polynomial—
the coefficients of the powers of x are the same, namely k. We will need to allow more

general coefficients if we are to get anything other than the geometric series.



DEFINITION 11.8.1 A power series has the form
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with the understanding that a,, may depend on n but not on =. O
o0 i_:n
EXAMPLE 11.8.2 Z — is a power series. We can investigate convergence using the
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ratio test:
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Thus when |z| < 1 the series converges and when |z| > 1 it diverges, leaving only two values
in doubt. When x = 1 the series is the harmonic series and diverges; when » = —1 it is the
alternating harmonic series (actually the negative of the usual alternating harmonic series)
En
n
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and converges. Thus, we may think of Z — as a function from the interval [—1,1) to
n=1

the real numbers. O

A bit of thought reveals that the ratio test applied to a power series will always have

the same nice form. In general, we will compute
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assuming that lim|a,1|/|an| exists. Then the series converges if L|z| < 1, that is, if
|z| < 1/L, and diverges if || > 1/L. Ounly the two values = = +1/L require further



investigation. Thus the series will definitely define a function on the interval (—1/L,1/L),
and perhaps will extend to one or both endpoints as well. Two special cases deserve
mention: if L = 0 the limit is 0 no matter what value x takes, so the series converges for
all  and the function is defined for all real numbers. If L = oo, then for any non-zero
value of z the limit is infinite, so the series converges only when z = 0. The value 1/L
is called the radius of convergence of the series, and the interval on which the series
converges is the interval of convergence.

Consider again the geometric series,

Whatever benefits there might be in using the series form of this function are only avail-
able to us when z is between —1 and 1. Frequently we can address this shortcoming by

modifying the power series slightly. Consider this series:
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because this is just a geometric series with x replaced by (z+2)/3. Multiplying both sides
by 1/3 gives

the same function as before. For what values of z does this series converge? Since it is a

geometric series, we know that it converges when

lz+2|/3<1
|z +2| <3
—3<r+2<3
-5 <zr<l.

So we have a series representation for 1/(1 —z) that works on a larger interval than before,
at the expense of a somewhat more complicated series. The endpoints of the interval of
convergence now are —5 and 1, but note that they can be more compactly described as
—2 + 3. We say that 3 is the radius of convergence, and we now say that the series is

centered at —2.



DEFINITION 11.8.3 A power series centered at a has the form
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Ezxercises 11.8.

Find the radius and interval of convergence for each series. In exercises 3 and 4, do not attempt
to determine whether the endpoints are in the interval of convergence.
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11.9 CALcuULUS WITH POWER SERIES

Now we know that some functions can be expressed as power series, which look like infinite
polynomials. Since calculus, that is, computation of derivatives and antiderivatives, is easy

for polynomials, the obvious question is whether the same is true for infinite series. The

answer is yes:

THEOREM 11.9.1 Suppose the power series f(z) = Zan(m — a)" has radius of
n=>0

convergence K. Then
f'(a) = Z nan(z — )",

[f(g;)dx—CJerH a)"

and these two series have radius of convergence R as well. [ |



EXAMPLE 11.9.2 Starting with the geometric series:
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when |z| < 1. The series does not converge when = = 1 but does converge when = = —1
or 1 —x = 2. The interval of convergence is [-1,1), or 0 < 1 — 2 < 2, so we can use the

series to represent In(z) when 0 < z < 2. For example

In(3/2) = In(1 - =1/2) = 3_(~1)"= i lgn—l—l-l
n=0

and so
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Because this is an alternating series with decreasing terms, we know that the true value
is between 909/2240 and 909/2240 — 1/2048 = 29053/71680 =~ .4053, so correct to two
decimal places the value is 0.41.

What about In(9/4)? Since 9/4 is larger than 2 we cannot use the series directly, but
In(9/4) = 1In((3/2)?) = 2In(3/2) ~ 0.82,

so in fact we get a lot more from this one calculation than first meets the eye. To estimate
the true value accurately we actually need to be a bit more careful. When we multiply by
two we know that the true value is between 0.8106 and 0.812, so rounded to two decimal
places the true value is 0.81. O



Frercises 11.9.

1. Find a series representation for In2. =

2. Find a power series representation for 1/(1 — z)?. =

3. Find a power series representation for 2/(1 — z)*. =

4. Find a power series representation for 1/(1 — ..1:)3. What is the radius of convergence? =

5. Find a power series representation for fln{l —x)dr. =



