WORKSHEET 1 ON POWER SERIES

Work these on notebook paper, except for problem 1.

1. Derive the Taylor series formula by filling in the blanks below.

Let
$$f(x) = a_0 + a_1(x-c) + a_2(x-c)^2 + a_3(x-c)^3 + a_4(x-c)^4 + a_5(x-c)^5 + ... + a_n(x-c)^n + ...$$

What happens to this series if we let x = c?

$$f(c) =$$
_____ so $a_0 =$ ____

Now differentiate f(x) to find f'(x) and f'(c).

$$f'(x) =$$

$$f'(c) =$$
 _____ so $a_1 =$ ____

Differentiate again, and find f''(x) and f''(c).

$$f''(x) =$$

$$f''(c) =$$
_____ so $a_2 =$ ____

Now find f'''(x) and f'''(c).

$$f'''(x) =$$

$$f'''(c) =$$
 _____ so $a_3 =$ _____

Do you see a pattern?
$$f^{(n)}(c) =$$
_____ so $a_n =$ _____

Now substitute your results into

$$f(x) = a_0 + a_1(x-c) + a_2(x-c)^2 + a_3(x-c)^3 + a_4(x-c)^4 + a_5(x-c)^5 + \dots + a_n(x-c)^n + \dots$$

$$f(x) = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} (x-c) + \underline{\hspace{1cm}} (x-c)^2 + \underline{\hspace{1cm}} (x-c)^3 + \dots + \underline{\hspace{1cm}} (x-c)^n + \dots$$

On problem 2, find a Taylor series for f(x) centered at the given value of c. Give the first four nonzero terms and the general term for the series.

2.
$$f(x) = e^{2x}$$
, $c = 3$

On problem 3 - 4, find a Taylor series for f(x) centered at the given value of c. Give the first four nonzero terms. (You do not need to give the general term.)

3.
$$f(x) = \sin\left(2x + \frac{\pi}{3}\right), c = 0$$

4.
$$f(x) = \cos x, c = \frac{2\pi}{3}$$

On problems 5-8, find a Maclaurin series for f(x). Give the first four nonzero terms and the general term for each series.

$$5. \ f(x) = \sin(x^3)$$

6.
$$f(x) = \frac{\cos(3x)}{x}$$

7. $f(x) = x^2 e^{-x}$

7.
$$f(x) = x^2 e^{-x}$$

8.
$$f(x) = \sin^2 x$$
 (Hint: Use the fact that $\sin^2 x = \frac{1 - \cos(2x)}{2}$.)

Answers

Worksheet 1 on Power Series

1.
$$a_0 = f(c)$$
, $a_1 = f'(c)$, $a_2 = \frac{f''(c)}{2!}$, $a_c = \frac{f'''(c)}{3!}$, $a_n = \frac{f^{(n)}(c)}{n!}$

$$f(x) = f(c) + f'(c)(x-c) + \frac{f''(c)(x-c)^2}{2!} + \frac{f'''(c)(x-c)^3}{3!} + \dots + \frac{f^{(n)}(c)(x-c)^n}{n!} + \dots$$

2.
$$e^{6} + 2e^{6}(x-3) + \frac{4e^{6}(x-3)^{2}}{2!} + \frac{8e^{6}(x-3)^{3}}{3!} + \dots + \frac{2^{n}e^{6}(x-3)^{n}}{n!} + \dots$$

3.
$$\frac{\sqrt{3}}{2} + x - \frac{2\sqrt{3}x^2}{2!} - \frac{4x^3}{3!} + \dots$$

$$4. -\frac{1}{2} - \frac{\sqrt{3}}{2} \left(x - \frac{2\pi}{3} \right) + \frac{\left(x - \frac{2\pi}{3} \right)^2}{2 \cdot 2!} + \frac{\sqrt{3} \left(x - \frac{2\pi}{3} \right)^3}{2 \cdot 3!} + \dots$$

5.
$$x^3 - \frac{x^9}{3!} + \frac{x^{15}}{5!} - \frac{x^{21}}{7!} + \dots + \frac{(-1)^n x^{6n+3}}{(2n+1)!} + \dots$$

6.
$$\frac{1}{x} - \frac{9x}{2!} + \frac{81x^3}{4!} - \frac{729x^5}{6!} + \dots + \frac{(-1)^n 3^{2n} x^{2n-1}}{(2n)!} + \dots$$
 where $x \neq 0$

7.
$$x^2 - x^3 + \frac{x^4}{2!} - \frac{x^5}{3!} + \dots + \frac{(-1)^n x^{n+2}}{n!} + \dots$$

$$8. \ \frac{2x^2}{2!} - \frac{8x^4}{4!} + \frac{32x^6}{6!} - \frac{128x^8}{8!} + \dots + \frac{\left(-1\right)^{n+1}2^{2n-1}x^{2n}}{(2n)!} + \dots$$

WORKSHEET 2 ON POWER SERIES

Work the following on notebook paper. Do not use your calculator. Show all work.

- 1. (a) Find a Maclaurin series for $f(x) = \cos x$. Give the first four nonzero terms and the general term.
 - (b) Use your answer to (a) to find $\lim_{x\to 0} \frac{\cos x 1}{x^2}$.
- 2. (a) Find a Maclaurin series for $f(x) = \frac{1}{1-2x}$. Give the first four nonzero terms and the general term.
 - (b) Use your answer to (a) to find $\lim_{x\to 0} \frac{f(x)-1}{x}$.
- 3. (a) Find a Maclaurin series for $f(x) = \sin x$. Give the first four nonzero terms and the general term.
 - (b) Use your answer to (a) to approximate the value of $\int_0^1 \frac{\sin t}{t} dt$ so that the error in your approximation is less than $\frac{1}{500}$. Justify your answer.

On problems 4 - 5, find a series for the given function. Give the first four nonzero terms and the general term for the series.

4.
$$f(x) = e^{(x+2)}$$
 centered at $x = 0$

5.
$$g(x) = e^{(x+2)}$$
 centered at $x = -2$

- 6. (a) Let $f(x) = \sin(x^2)$. Write the first four nonzero terms of the Taylor series for $\sin(x^2)$ about x = 0.
 - (b) Let $g(x) = \cos(x)$. Write the first four nonzero terms of the Taylor series for $\cos(x^3)$ about x = 0.
 - (c) Let $h(x) = \sin(x^2) + \cos(x)$. Write the first four nonzero terms of the Taylor series for h about x = 0.
- 7. (a) Let $f(x) = \sin(x^2)$. Write the first four nonzero terms and the general term of the Taylor series for $\sin(x^2)$ about x = 0.
 - (b) Let $g'(x) = \sin(x^2)$. Given that g(0) = 1, write the first five nonzero terms and the general term of the Taylor series for g(x) about x = 0.
- 8. (1990 BC 5) Let f be the function defined by $f(x) = \frac{1}{x-1}$.
 - (a) Write the first four terms and the general term of the Taylor series expansion of f(x) about x = 2.
 - (b) Use the result from part (a) to find the first four terms and the general term of the series expansion about x = 2 for $\ln |x 1|$.
 - (c) Use the series in part (b) to find an approximation for $\ln \frac{3}{2}$ so that the error in your approximation is less than $\frac{1}{20}$. How many terms were needed? Justify your answer.

Answers

Worksheet 2 on Power Series

1. (a) $1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + \frac{(-1)^n x^{2n}}{(2n)!} + \dots$

(b) $-\frac{1}{2}$

2. (a) $1 + 2x + 4x^2 + 8x^3 + ... + (2x)^n + ...$

- (b) 2
- 3. (a) $x \frac{x^3}{3!} + \frac{x^5}{5!} \frac{x^7}{7!} + \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + \dots$
 - (b) $\frac{17}{18}$. Since the terms of the series are alternating, decreasing in magnitude, and having a limit of 0 and the approximation is made by using the first two terms, the error will be less than the absolute value of the third term, so $|\text{Error}| < \frac{1}{600} < \frac{1}{500}$.
- 4. $e^2 + e^2x + \frac{e^2x^2}{2!} + \frac{e^2x^3}{3!} + \dots + \frac{e^2x^n}{n!} + \dots$
- 5. $1+(x+2)+\frac{(x+2)^2}{2!}+\frac{(x+2)^3}{3!}+...+\frac{(x+2)^n}{n!}+...$
- 6. (a) $x^2 \frac{x^6}{3!} + \frac{x^{10}}{5!} \frac{x^{14}}{7!} + \dots$

- (b) $1 \frac{x^2}{2!} + \frac{x^4}{4!} \frac{x^6}{6!} + \dots$
- (c) $1 + \left(1 \frac{1}{2!}\right)x^2 + \frac{x^4}{4!} \left(\frac{1}{3!} + \frac{1}{6!}\right)x^6 + \dots = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} \frac{121x^6}{6!} + \dots$
- 7. (a) $x^2 \frac{x^6}{3!} + \frac{x^{10}}{5!} \frac{x^{14}}{7!} + \dots + \frac{(-1)^n x^{4n+2}}{(2n+1)!} + \dots$
 - (b) $1 + \frac{x^3}{3} \frac{x^7}{7 \cdot 3!} + \frac{x^{11}}{11 \cdot 5!} \frac{x^{15}}{15 \cdot 7!} + \dots + \frac{\left(-1\right)^n x^{4n+3}}{\left(4n+3\right)\left(2n+1\right)!} + \dots$
- 8. (a) $1-(x-2)+(x-2)^2-(x-2)^3+...+(-1)^n(x-2)^n+...$
 - (b) $(x-2) \frac{(x-2)^2}{2} + \frac{(x-2)^3}{3} \frac{(x-2)^4}{4} + \dots + \frac{(-1)^n (x-2)^{n+1}}{n+1} + \dots$
 - (c) $\ln 2 \approx \frac{3}{8}$. Two terms are needed. Since the terms of the series are alternating, decreasing in magnitude, and having a limit of 0 and the approximation is made by using the first two terms, the error will be less than the absolute value of the third term, so $\left|\text{Error}\right| < \frac{1}{24} < \frac{1}{20} = 0.05$.