Integration by Parts:

Knowing which function to call u and which to call dv takes some practice. Here is a general guide:

Functions that appear at the top of the list are more like to be u, functions at the bottom of the list are more like to be dv.

Integration By "Parts"

If
$$u = f(x)$$
 and $v = g(x)$ and if $f'(x)$ and $g'(x)$ are continuous, then
$$\int u \, dx = uv - \int v \, du$$
.

<u>Note</u>: The goal of the procedure is to choose u and dv so that $\int v \, du$ is easier to solve than the original problem.

Suggestion:

When "choosing" u, remember **L.I.A.T.E**, where **L** is the logarithmic function, **I** is an inverse trigonometric function, **A** is an algebraic function, **T** is a trigonometric function, and **E** is the exponential function. Just choose u as the first expression in **L.I.A.T.E** (and dv will be the remaining part of the integrand). For example, when integrating $\int x \ln x \, dx$, choose $u = \ln x$ since **L** comes first in **L.I.A.T.E**, and $dv = x \, dx$. When integrating $\int x e^x \, dx$, choose u = x, since x is an algebraic function, and **A** comes before **E** in **L.I.A.T.E**, and $dv = e^x \, dx$. One more example, when integrating $\int x \, Arc \tan(x) \, dx$, let $u = Arc \tan(x)$, since **I** comes before **A** in **L.I.A.T.E**, and $dv = x \, dx$.