***Parametric Form of the Derivative

If a smooth curve C is given by the parametric equations x = f(x) and y = g(t), then the slope of the curve C at (x, y) is $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$, $\frac{dx}{dt} \neq 0$.

<u>Note</u>: The second derivative, $\frac{d^2y}{dx^2} = \frac{d}{dx} \left[\frac{dy}{dx} \right] = \frac{d}{dt} \left[\frac{dy}{dx} \right] \div \frac{dx}{dt}$.

***Arc Length in Parametric Form

If a smooth curve C is given by x = f(t) and y = g(t) and these functions have continuous first derivatives with respect to t for $a \le t \le b$, and if the point P(x, y) traces the curve exactly once as t moves from t = a to t = b, then the length of the curve is given by

$$s = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt = \int_{a}^{b} \sqrt{\left(f'(t)\right)^{2} + \left(g'(t)\right)^{2}} dt.$$

$$speed = \sqrt{\left(f'(t)\right)^{2} + \left(g'(t)\right)^{2}}$$

Arc Length =
$$\int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$$
 Arc Length =
$$\int_{t_{1}}^{t_{2}} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$
Speed =
$$= \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}}$$
 T.D.T. =
$$\int_{t_{1}}^{t_{2}} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$
Polar Area =
$$\frac{1}{2} \int_{\theta_{1}}^{\theta_{2}} r^{2} d\theta$$
 Parametric Derivatives:
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}, \frac{d^{2}y}{dx^{2}} = \frac{\frac{d}{dt} \left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$$

Speed = =
$$\sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$$
 T.D.T. = $\int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$

Polar Area =
$$\frac{1}{2} \int_{\theta_1}^{\theta_2} r^2 d\theta$$
 Parametric Derivatives: $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}, \frac{d^2y}{dx^2} = \frac{\frac{a}{dt} \left(\frac{dy}{dx}\right)}{\frac{dx}{dt}}$

Polar Conversions: $r^2 = x^2 + y^2$, $x = r \cos \theta$, $y = r \sin \theta$, $\theta = \arctan \frac{y}{x}$