NOTE: These tests prove convergence and divergence, not the actual limit *L* or sum **S**.

Sequence:
$$\lim_{n\to\infty} a_n = L$$

 $(a_n, a_{n+1}, a_{n+2}, ...)$

Series:
$$\sum_{n=1}^{\infty} a_n = \mathbf{S}$$

 $(a_n + a_{n+1} + a_{n+2} + \cdots)$

***Sequences and Series

If a sequence {a_n} has a limit L, that is, lim _{n→∞} a_n = L, then the sequence is said to converge to L. If there is no limit, the series diverges. If the sequence {a_n} converges, then its limit is unique. Keep in mind that

$$\lim_{n\to\infty}\frac{\ln n}{n}=0;\quad \lim_{n\to\infty}x^{\left(\frac{1}{n}\right)}=1;\quad \lim_{n\to\infty}\sqrt[n]{n}=1;\quad \lim_{n\to\infty}\frac{x^n}{n!}=0\;. \text{ These limits are useful and arise frequently.}$$

- 2. The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges; the geometric series $\sum_{n=0}^{\infty} ar^n$ converges to $\frac{a}{1-r}$ if |r| < 1 and diverges if $|r| \ge 1$ and $a \ne 0$.
- 3. The p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$.

Sequences & Series	
Sequence	$\lim_{n\to\infty}a_n=L \text{ (Limit)}$ Example: $(a_n,a_{n+1},a_{n+2},)$
	$S = \lim_{n \to \infty} \frac{a(1 - r^n)}{1 - r} = \frac{a}{1 - r}$
Geometric Series	only if $ r < 1$ where r is the radius of convergence and $(-r,r)$ is the interval of convergence