NOTE: These tests prove
convergence and divergence, not
the actual limit L or sum S.
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If a sequence {(.‘f H} has a limit 7 . thatis. lim @y = L . then the sequence is said to
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converge to [ . If there is no limit. the series diverges. If the sequence {a” j converges.

then its limit is unique. Keep in mind that
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lim —=0: lim x™ =1 lim ¥n =1 lim ——=0. These limits
are useful and arise frequently.
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The harmonic series Z — diverges: the geometric series Z ar converges fto
n=l 1 n=0 -r
if |r] <1 and diverges if M =land a=0.
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The p-series Z — converges if p > 1 and divergesif p=1.

n=l 1




Sequences & Series

IEn a, = L (Limit)

Sequence Example: (a,,, 0,41, Qo o)

- 1i a(l—r") a
= 1-r  1-r

Geometric Series only if Ir| < 1

where r is the radius of convergence
and (—r, 1) is the interval of convergence




