ALTERNATING SERIES

Does
$$a_n = (-1)^n b_n$$
 or $a_n = (-1)^{n-1} b_n$, $b_n \ge 0$?

Is
$$b_{n+1} \le b_n$$
 & $\lim_{n \to \infty} b_n = 0$? — YES — $\sum a_n$ Converges

Alternating Series: Let $\sum_{n=1}^{\infty} a_n$ be a series such that

- i) the series is alternating
- ii) $\left| a_{n+1} \right| \le \left| a_n \right|$ for all n, and
- $\lim_{n \to \infty} a_n = 0$

Then the series converges.

Alternating Series Remainder: The remainder $R_{\rm N}$ is less than (or equal to) the first neglected term

$$\left|R_{N}\right| \leq a_{N+1}$$

Alt. Series Error: error $\leq |a_{n+1}|$ (the next term)