Direct Comparison

a series with terms **smaller** than a known convergent series also converges a series with terms **larger** than a known divergent series also diverges

8

Direct Comparison Test

$$(a_n, b_n > 0)$$

Series: $\sum_{n=1}^{\infty} a_n$

Condition of Convergence: $0 < a_n \le b_n$

 $\begin{array}{c} 0 < a_n \leq b_n \\ \text{and } \sum_{n=0}^{\infty} b_n \text{ is absolutely} \\ \text{convergent} \end{array}$

Condition of Divergence:

$$0 < b_n \leq a_n$$
 and $\sum_{n=0}^{\infty} b_n$ diverges

COMPARISON TEST Pick $\{b_n\}$. Does $\sum b_n$ converge?

Comparison Test: If
$$0 \le a_n \le b_n$$
 for all sufficiently large n , and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges. If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} b_n$ diverges.