5

Integral Test

Series: $\sum_{n=1}^{\infty} a_n$ when $a_n = f(n) \ge 0$ and f(n) is continuous, positive and decreasing

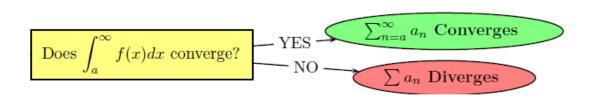
Condition of Convergence: $\int_{1}^{\infty} f(x)dx \text{ converges}$

Condition of Divergence: $\int_{1}^{\infty} f(x) dx \text{ diverges}$

* Remainder: $0 < R_N \le \int_N^\infty f(x) dx$

INTEGRAL TEST

Does
$$a_n = f(n)$$
, $f(x)$ is continuous, positive & decreasing on YES $[a, \infty)$?



Integral Test: If f(x) is a positive, continuous, and decreasing function on $[1,\infty)$ and let $a_n=f(n)$. Then the series $\sum_{n=1}^\infty a_n$ will converge if the improper integral $\int\limits_1^\infty f(x)\,dx$ converges. If the improper integral $\int\limits_1^\infty f(x)\,dx$ diverges, then the infinite series $\sum_{n=1}^\infty a_n$ diverges.