9

Limit Comparison Test

$$({a_n}, {b_n} > 0)$$

Series: $\sum_{n=1}^{\infty} a_n$

Condition of Convergence:

$$\lim_{n\to\infty}\frac{a_n}{b_n}=L>0$$
 and $\sum_{n=0}^{\infty}\,b_n$ converges

Condition of Divergence:

$$\lim_{n\to\infty}\frac{a_n}{b_n}=L>0$$
 and $\sum_{n=0}^{\infty}b_n$ diverges

LIMIT COMPARISON TEST

Pick
$$\{b_n\}$$
. Does $\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$ refinite & $a_n, b_n > 0$?

Limit Comparison

if $\lim_{n\to\infty} \frac{a_n}{b_n}$ is finite and positive both series converge or both diverge (use with "messy" algebraic series, usually compared to a *p*-series)

<u>Limit Comparison Test</u>: Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be a series of nonnegative terms, with

 $a_n \neq 0$ for all sufficiently large n, and suppose that $\lim_{n \to \infty} \frac{b_n}{a_n} = c > 0$. Then the two series either both converge or both diverge.