6

Ratio Test

Series: $\sum_{n=1}^{\infty} a_n$

$$\frac{\text{Condition of Convergence:}}{\lim\limits_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|<1}$$

$$\frac{\text{Condition of Divergence:}}{\lim\limits_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|>1}$$

* Test inconclusive if

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=1$$

RATIO TEST

Is
$$\lim_{n\to\infty} |a_{n+1}/a_n| \neq 1$$
? — YES

Ratio Test: Let $\sum a_n$ be a series with nonzero terms.

- i) If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$, then the series converges absolutely.
- ii) If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$, then the series is divergent.
- iii) If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, then the test is inconclusive (and another test must be used).