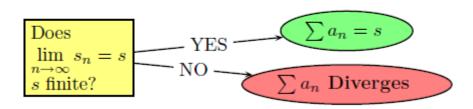
10

## **Telescoping Series Test**

Series:  $\sum_{n=1}^{\infty} (a_{n+1} - a_n)$ 

Condition of Convergence:

$$\lim_{n\to\infty}a_n=L$$


Condition of Divergence: None

## NOTE:

- 1) May need to reformat with partial fraction expansion or log rules.
- 2) Expand first 5 terms. n=1,2,3,4,5.
- 3) Cancel duplicates.
- 4) Determine limit L by taking the limit as  $n \to \infty$ .
- 5) Sum:  $S = a_1 L$

## TELESCOPING SERIES

Do subsequent terms cancel out previous terms in the sum? May have to use partial fractions, properties — YES of logarithms, etc. to put into appropriate form.



| Taylor Series |                                                                                                                                                                                                                        |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Taylor Series | $f(x) = P_n(x) + R_n(x)$ $= \sum_{n=0}^{+\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n + \frac{f^{(n+1)}(x^*)}{(n+1)!} (x-c)^{n+1}$ where $x \le x^* \le c$ (worst case scenario $x^*$ ) and $\lim_{x \to +\infty} R_n(x) = 0$ |