CHAPTER 6 QUADRILATERALS

Theorem 6.1 Interior Angle Sum Theorem

If a convex polygon has n sides and S is the sum of the measures of its interior angles, then S = 180(n - 2).

Theorem 6.2 Exterior Angle Sum Theorem

If a polygon is convex, then the sum of the measures of the exterior angles, one at each vertex, is 360.

Example:
$$m \angle 1 + m \angle 2 + m \angle 3 + m \angle 4 + m \angle 5 = 360$$

Theorems 6.3 - 6.6

6.3	Opposite sides of a parallelogram are congruent. Abbreviation: Opp. sides of □ are ≅.	Examples	
		$\frac{\overline{AB}}{\overline{AD}} \cong \frac{\overline{DC}}{\overline{BC}}$	A B
6.4	Opposite angles in a parallelogram are congruent. Abbreviation: Opp $ \& $ of $ \square $ are $ \cong $.	$\angle A \cong \angle C$ $\angle B \cong \angle D$	# #
6.5	Consecutive angles in a parallelogram are supplementary. Abbreviation: Cons. & in are suppl.	$m \angle A + m \angle B = 180$ $m \angle B + m \angle C = 180$ $m \angle C + m \angle D = 180$ $m \angle D + m \angle A = 180$	D C
6.6	If a parallelogram has one right angle, it has four right angles. Abbreviation: If □ has 1 rt. ∠, it has 4 rt. ዿ.	$m \angle G = 90$ $m \angle H = 90$ $m \angle J = 90$ $m \angle K = 90$	G K

Theorem 6.7

The diagonals of a parallelogram bisect each other.

Abbreviation: Diag. of \square bisect each other.

Example: $\overline{RQ} \cong \overline{QT}$ and $\overline{SQ} \cong \overline{QU}$

Theorem 6.8

Each diagonal of a parallelogram separates the parallelogram into two congruent triangles.

Abbreviation: Diag. separates \square into $2 \cong \triangle s$.

Example: $\triangle ACD \cong \triangle CAB$

Theorems 6.9 – 6.12 Proving Parallelograms

6.9	If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram. Abbreviation: If both pairs of opp. sides are \cong , then quad. is \square .	
6.10	If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram. Abbreviation: If both pairs of opp. $\&$ are \cong , then quad. is \square .	
6.11	If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram. Abbreviation: If diag. bisect each other, then quad. is	
6.12	If one pair of opposite sides of a quadrilateral is both parallel and congruent, then the quadrilateral is a parallelogram. Abbreviation: If one pair of opp. sides is \parallel and \cong , then the quad. is a \square .	

Theorem 6.13

If a parallelogram is a rectangle, then the diagonals are congruent.

Abbreviation: If \square is rectangle, diag. are \cong .

Theorem 6.14

If the diagonals of a parallelogram are congruent, then the parallelogram is a rectangle.

Abbreviation: If diagonals of \square are \cong , \square is a rectangle.

Theorems 6.15 - 6.17 Rhombus

		Examples	
6.15	The diagonals of a rhombus are perpendicular.	ĀC ⊥ BD	В
6.16	If the diagonals of a parallelogram are perpendicular, then the parallelogram is a rhombus. (Converse of Theorem 6.15)	If \overline{BD} ⊥ \overline{AC} then □ABCD is a rhombus.	A
6.17	Each diagonal of a rhombus bisects a pair of opposite angles.	$\angle DAC \cong \angle BAC \cong \angle DCA \cong \angle BCA$ $\angle ABD \cong \angle CBD \cong \angle ADB \cong \angle CDB$	D

Theorem 6.18 and 6.19 Isosceles Trapezoid

6.18	Each pair of base angles	Example:	A B
	of an isosceles trapezoid are congruent.	$\angle DAB \cong \angle CBA$	N A
6.19	The diagonals of an	$\angle ADC \cong \angle BCD$	\
	isosceles trapezoid are congruent.	$\overline{AC} \cong \overline{BD}$	
	congruent.		D

Theorem 6.20

The median of a trapezoid is parallel to the bases, and its measure is one-half the sum of the measures of the bases.

Example:
$$EF = \frac{1}{2}(AB + DC)$$