1 Given that ABCD is a parallelogram, a student wrote the proof below to show that a pair of its opposite angles are congruent.

Statement	Reason
1. ABCD is a parallelogram.	1. Given
$2. \overline{BC} \cong \overline{AD}$ $\overline{AB} \cong \overline{DC}$	Opposite sides of a parallelogram are congruent.
3. $\overline{AC} \cong \overline{CA}$	3. Reflexive Postulate of Congruency
4. $\triangle ABC \cong \triangle CDA$	4. Side-Side-Side
5. ∠B ≃ ∠D	5

What is the reason justifying that $\angle B \cong \angle D$?

- Opposite angles in a quadrilateral are congruent.
- Parallel lines have congruent corresponding angles.
- Corresponding parts of congruent triangles are congruent.
- Alternate interior angles in congruent triangles are congruent.

Statements	Reasons
	3 Corresponding parts of congruent triangles are congruent.

2 Given: Parallelogram ABCD with diagonal \overline{AC} drawn

Prove: $\triangle ABC \cong \triangle CDA$

Statements Reasons

Parallelogram ABCD with diagonal \overline{AC} drawn

$$\overline{AC}\cong \overline{AC}$$

$$\overline{AD} \cong \overline{CB}$$
 and $\overline{BA} \cong \overline{DC}$

$$\triangle ABC \cong \triangle CDA$$

(given).

(reflexive property).

(opposite sides of a parallelogram are congruent).

(SSS).

3 Given: Quadrilateral ABCD, diagonal \overline{AFEC} , $\overline{AE} \cong \overline{FC}$, $\overline{BF} \perp \overline{AC}$, $\overline{DE} \perp \overline{AC}$, $\angle 1 \cong \angle 2$ Prove: ABCD is a parallelogram.

Statements Reasons

 $\overline{FE} \cong \overline{FE}$ (Reflexive Property)

 $\overline{AE} - \overline{FE} \cong \overline{FC} - \overline{EF}$ (Line Segment Subtraction Theorem)

 $\overline{AF} \cong \overline{CE}$ (Substitution); $\angle BFA \cong \angle DEC$ (All right angles are congruent)

 $\triangle BFA \cong \triangle DEC$ (AAS);

 $\overline{AB} \cong \overline{CD}$ and $\overline{BF} \cong \overline{DE}$ (CPCTC);

 $\angle BFC \cong \angle DEA$ (All right angles are congruent)

 $\triangle BFC \cong \triangle DEA \text{ (SAS)};$

 $\overline{AD} \cong \overline{CB}$ (CPCTC);

ABCD is a parallelogram (opposite sides of quadrilateral ABCD are congruent)

4

In the diagram below of quadrilateral *ABCD*, $\overline{AD} \cong \overline{BC}$ and $\angle DAE \cong \angle BCE$. Line segments AC, DB, and FG intersect at E. Prove: $\triangle AEF \cong \triangle CEG$

Statements Reasons

Quadrilateral ABCD, $\overline{AD} \cong \overline{BC}$ and $\angle DAE \cong \angle BCE$ are given.

 $\overline{AD} \parallel \overline{BC}$ because if two lines are cut by a transversal so that a pair of alternate interior angles are congruent, the lines are parallel.

ABCD is a parallelogram because if one pair of opposite sides of a quadrilateral

are both congruent and parallel, the quadrilateral is a parallelogram.

 $\overline{AE} \cong \overline{CE}$ because the diagonals of a parallelogram bisect each other.

 $\angle FEA \cong \angle GEC$ as vertical angles.

 $\triangle AEF \cong \triangle CEG$ by ASA.

Prove: $\triangle LGS \cong \triangle HAF$

Statements Reasons

 $\overline{FH} \cong \overline{SL}$. Because *FLSH* is a parallelogram,

 $\overline{FH} \parallel \overline{SL}$ Because FLSH is a parallelogram,

 $\angle AFH$ and $\angle LSG$ are alternate interior angles and congruent. since \overline{FGAS} is a transversal,

Therefore $\triangle LGS \cong \triangle HAF$ by AAS.

The accompanying diagram shows quadrilateral BRON, with diagonals NR and BO, which bisect each other at X.

Prove: $\triangle BNX \cong \triangle ORX$

Statements Reasons

 $\overline{NX} \cong \overline{RX}$ and $\overline{BX} \cong \overline{OX}$.

Because diagonals \overline{NR} and \overline{BO} bisect each other,

∠BXN and ∠OXR are congruent

vertical angles.

Therefore $\triangle BNX \cong \triangle ORX$ by SAS.

Given: Parallelogram \underline{ANDR} with \overline{AW} and \overline{DE} bisecting \overline{NWD} and \overline{REA} at points W and E, respectively

Prove that $\triangle ANW \cong \triangle DRE$. Prove that quadrilateral AWDE is a parallelogram.

Statements Reasons

Parallelogram ANDR with \overline{AW} and \overline{DE}

 $\overline{AN}\cong\overline{RD},\ \overline{AR}\cong\overline{DN}$

(Given).

bisecting \overline{NWD} and \overline{REA} at points W and E

(Opposite sides of a parallelogram are congruent).

 $\overline{AR} \parallel \overline{DN}$ (Opposite sides of a parallelogram are parallel).

AWDE is a parallelogram (Definition of parallelogram).

$$RE = \frac{1}{2}AR$$
, $NW = \frac{1}{2}DN$, so $\overline{RE} \cong \overline{NW}$ (Definition of bisect and division property of equality).

 $\overline{ED} \cong \overline{AW}$ (Opposite sides of a parallelogram are congruent). $\triangle ANW \cong \triangle DRE$ (SSS).

8 Given: Quadrilateral ABCD is a parallelogram with diagonals \overline{AC} and \overline{BD} intersecting at E

Prove: $\triangle AED \cong \triangle CEB$ Describe a single rigid motion that maps $\triangle AED$ onto $\triangle CEB$.

Statements Reasons

Quadrilateral *ABCD* is a parallelogram with diagonals \overline{AC} and \overline{BD} intersecting at E (Given).

E

 $\overline{AD} \cong \overline{BC}$ (Opposite sides of a parallelogram are congruent).

 $\angle AED \cong \angle CEB$ (Vertical angles are congruent).

 $\overline{BC} \parallel \overline{DA}$ (Definition of parallelogram).

 $\angle DBC \cong \angle BDA$ (Alternate interior angles are congruent).

 $\triangle AED \cong \triangle CEB$ (AAS). 180° rotation of $\triangle AED$ around point E.