Mark the given information on the diagram. Give a reason for each step in the two-column proof. Choose the reason for each statement from the list below.

Given: $\overline{AD} \cong \overline{BC}$

 $\overline{AB} \cong \overline{DC}$

Prove: $\overline{AD} \mid \overline{BC}$

Statement	Reason
1. $\overline{AD} \cong \overline{BC}$	1.
2. AB≅DC	2.
3. $\overline{AC} \cong \overline{AC}$	3.
4. $\Delta CAD \cong \Delta ACB$	4.
5. ∠DAC≅∠BCA	5.
6. $\overline{AD} \ \overline{BC}$	6.

Choose a reason from this list:

Definition of congruent triangles

Given

Given

If alternate interior angles are congruent then the lines are parallel.

Reflexive property of congruence

Side-Side congruence

Mark the given information on the diagram. Give a reason for each step in the two-column proof. Choose the reason for each statement from the list below.

Given: $\overline{AD} \cong \overline{BC}$

 $\overline{AB} \cong \overline{DC}$

Prove: $\overline{AD} \mid \overline{BC}$

Statement	Reason
1. $\overline{AD} \cong \overline{BC}$	1.
2. $\overline{AB} \cong \overline{DC}$	2.
3. $\overline{AC} \cong \overline{AC}$	3.
4. $\Delta CAD \cong \Delta ACB$	4.
5. ∠DAC≅∠BCA	5.
6. $\overline{AD} \ \overline{BC}$	6.

Choose a reason from this list:

Definition of congruent triangles

Given

Given

If alternate interior angles are congruent then the lines are parallel.

Reflexive property of congruence

Side-Side-Side congruence

Complete the following proof by filling in each statement. Remember to mark all given information on the diagram.

В

E

Given: ABCD is a parallelogram

Prove: $\triangle ABE \cong \triangle CDE$

Choose a statement from this list:

 $\overline{AE} \cong \overline{EC}$ \overline{ABCD} is a parallelogram $\overline{DE} \cong \overline{EB}$ $\overline{\Delta ABE} \cong \overline{\Delta CDE}$ $\overline{AB} \cong \overline{DC}$

Fill-in the statements and reasons for the following proof.

Given: $\overline{DE} \| \overline{AV}$

 $\Delta DAV \cong \Delta EVA$

Prove: DAVE is an isosceles trapezoid

Statement	Reason
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.

Possible Statements

DAVE is a trapezoid

 $\overline{\mathrm{DA}} \cong \overline{\mathrm{EV}}$

DAVE is an isosceles trapezoid

 $\Delta DAV \cong \Delta EVA$

 $\overline{\mathrm{DE}} \, \Big\| \, \overline{\mathrm{AV}}$

Possible Reasons

Given

Definition of isosceles trapezoid

Given

Definition of trapezoid

Definition of congruent triangles

Complete the following proof.

Given: MR is a diameter of ⊙ O

 $\overline{AR} \cong \overline{MK}$

Prove: $\Delta MAR \cong \Delta RKM$

Statement	Reason
1. MR is a diameter of ⊙ O	1.
2. MAR and MKR are semicircles	2.
3. ∠MAR and ∠MKR are right angles	3.
4. ∠MAR ≅ ∠MKR	4.
5. $\overline{MR} \cong \overline{MR}$	5.
6. $\overline{AR} \cong \overline{MK}$	6.
7. $\Delta MAR \cong \Delta RKM$	7.

Choose from this list of reasons.

An angle inscribed in a semicircle is a right angle.
All right angles are congruent
Definition of a semicircle
Given
Given
Hypotenuse-Leg Congruence
Reflexive property of congruence