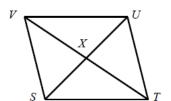
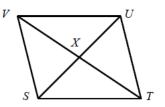
Given: $\overline{VU} \cong \overline{ST}$ and $\overline{SV} \cong \overline{TU}$ Prove: VX = XT



1.
$$\overline{VU} \cong \overline{ST}$$
 and $\overline{SV} \cong \overline{TU}$

- 1. Given
- 2. STUV is a parallelogram
- 2. If both pairs of opp. sides of a quad. are \cong , then the quad is a parallelogram.
- 3. VX = XT
- 3. The diagonals of a parallelogram bisect each other.

Given: $\overline{SV} \cong \overline{TU}$ and $\overline{SV} \parallel \overline{TU}$ Prove: VX = XT



1. $\overline{SV} \cong \overline{TU}$ and $\overline{SV} \parallel \overline{TU}$

1. Given

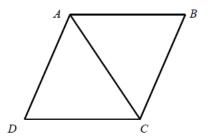
2. STUV is a parallelogram

2. If one pair of opp. sides of a quad. are both || and \cong , then the quad is a parallelogram.

3. VX = XT

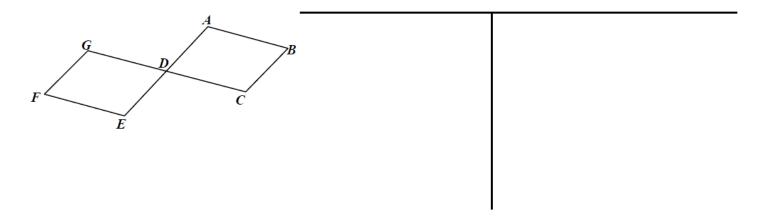
The diagonals of a parallelogram bisect each other.

Given: ABCD is a rhombus. Prove: $\triangle BCA \cong \triangle DAC$



- 1. ABCD is a rhombus
- 2. ABCD is a a parallelogram
- 1. Given
- 2. Definition of a rhombus
- 3. $\triangle BCA \cong \triangle DAC$
- 3. The diagonals of a parallelogram form two congruent triangles.

Given that ABCD and EFGD are parallelograms and that D is the midpoint of \overline{CG} and \overline{AE} , prove that ABCD and EFGD are congruent.



They should use the def. of midpoint and opposite sides of a parallelogram are \cong to show that $\overline{AD}\cong \overline{DE}\cong \overline{FG}\cong \overline{BC}$ and $\overline{GD}\cong \overline{DC}\cong \overline{AB}\cong \overline{EF}$. Then, using the vert. \angle thm. and opposite \angle 's of a parallelogram are \cong , show that $\angle GDE\cong \angle ADC\cong \angle B\cong \angle F$. $\angle G\cong \angle E\cong \angle A$, since opposite angles are \cong and add to 360° in a parallelogram. Therefore $\angle ABCD\cong EFGD$ because their corresponding sides and corresponding \angle 's \cong .