Parallelogram

A parallelogram is a quadrilateral with two pairs of parallel sides. All parallelograms, such as $\Box FGHJ$, have the following properties.

Properties o	f Parallelograms	
$ \begin{array}{ccc} G & & & & & & \\ F & & & & & \\ \hline FG & \cong & \overline{HJ} \\ \hline GH & \cong & \overline{JF} \end{array} $ Opposite sides are congruent.	Opposite angles are congruent.	∠F≅ ∠H ∠G≅ ∠J
	The diagonals bisect each other.	FP ≅ HP GP ≅ JP

Complete the statement and give the reason that justifies the statement.

Given: ABCD is a parallelogram

Statements	Reasons
a. $\overline{AB} \cong$ and $\overline{AD} \cong$	a.
b $\not = A \cong $ and $\not = D \cong $	b.
c. $\overline{AB} \parallel \underline{\hspace{1cm}}$ and $\overline{AD} \parallel \underline{\hspace{1cm}}$	c.
d. 4A suppl and 4C suppl and	d.
e. Draw \overline{AC} and \overline{BD} . (The lines intersect at E.)	e. Two Points Make a Line.
f. ≠BAC ≅ and ≠DAC ≅	f.
g. $\overline{AE} \cong$ and $\overline{DE} \cong$	g.

Prove: a) ∆DEA ≅ ∆BFC

b) ∠1 ≅ ∠2

STATEMENT

REASONS

- Parallelogram ABCD
 AD ≅ ____

- 5.
- 3. <u>∠D</u> ≅ ____ 4. DE ≅ FB
- 6.

- 1. Given
- 2.
- 3.
- 4. Given
- 5.
- 6.

Given: ABCD

Prove: △AEB ≅ △CED

STATEMENT	REASONS	
 Paralleiogram ABCD AB ≅ AB ∠CAB ≅ ∠AEB ≅ ∠AEB ≅ 	1. Given 2. 3. 4. 5. 6.	

Given:

 $\Box ABCD$

Prove:

 $\Delta DAC \cong \Delta BCA$

(At most 6 steps. You may not need all 6!)

Statements Reasons

1	
2 2	
3	
 4 5 5 6 6 	
5	
6	

Given: ☐ GHIJ HP ≅ JQ

Prove: $\overline{PX} \cong \overline{QX}$

Statements	Reasons
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8

Given: WOSB is a parallelogram

 $\frac{\angle 3 \cong \angle 4}{MW \cong SN}$

Prove: $\overline{IM} \cong \overline{LN}$

Statements Reasons

Challenge

Given: \overrightarrow{ABCD} is a parallelogram. $\overrightarrow{DE} \perp \overrightarrow{AF}$. $\overrightarrow{CF} \perp \overrightarrow{AF}$.

Prove: $\overline{DE} \cong \overline{CF}$.

Given: Parallelogram ABCD

Prove: AC and DB bisect each other

Statements

1. Parallelogram ABCD

2. AD || BC

A 3. ∠1 ≈ ∠2

A 4. ∠3 ≈ ∠4

S 5. AD ≈ BC

6. △BEC ≃ △DEA

7. DE ≈ BE

8. AE ≃ CE

9. AC and DB bisect each other

Reasons

- 1. Given
- 2. Opposite sides of a parallelogram are ||

3. // → AIA's ≅

4. // → AIA's ≅

- 5. Opposite sides of a parallelogram are »
- 6. ASA (3, 5, 4)
- 7. CPCTC
- 8. CPCTC
- 9. $2 \cong segs \rightarrow segment bisector$

Identify the reason that proves $\Delta ABD \cong \Delta CDB$.

- A) SSS
- B) SAS
- C) ASA
- D) AAS

Given: ABCD is a parallelogram. **Prove:** $\triangle AEB \cong \triangle CED$

Statements	Reasons

Given: \square ABCD (ABCD is a \square)

Conclusion: $\triangle ABC \cong \triangle CDA$

Given: ABCD is a \square (parallelogram). $\angle GHA \cong \angle FEC$, $\overline{HB} \cong \overline{DE}$

Conclusion: $\overline{GH} \cong \overline{EF}$

Statement	Reason
1	1 Given
2	2 Opposite sides of a □ are .
3	3 ∥ lines ⇒ alt. int. ∠s ≅
4	4 Opposite sides of a □ are ≅.
5	5 Given
6	6 Subtraction Property ()
7	7 Given
8	8 ASA (3, 6, 7) 9 CPCTC
9	9 CPCTC

Given: \square EFHJ, $\angle 1 \not\cong \angle 2$ Conclusion: $\overline{KH} \cong \overline{EG}$

Reasons **Statements**

Isosceles trapezoid ABCD has diagonals \overline{AC} and \overline{BD} . If AC = 5x + 13 and BD = 11x - 5, what is the value of x?

- 1) 28
- $10\frac{3}{4}$ 2)
- 3) 3
 4) ¹/₂

Given: RVTS is an isos.

trapezoid with legs

VR & TS

Prove: ARS is isosceles

Statements

- 1. RVTS is an isos. trapezoid with legs VR & TS
- S 2. VR = TS
- S 3. VS = TR
- S 4. RS = RS
 - 5. △VRS = △TSR
 - 6. ∠TRS ≡ ∠VSR
 - 7. AR = AS
 - 8. ARS is isosceles

- Given
- 2. Legs of an Isos. Trap are ≅
- 3 Diagonals of an Isos. Trap are ≅
- 4. Reflexive Property
- 5. SSS (2, 3, 4)
- 6. CPCTC
- 7. If \triangle , then riangle
- 8. If A, then Isos. ∆

Challenge:

Given: \overrightarrow{AC} bisects $\angle BAD$.

 $\frac{\overline{AB}}{\overline{AB}} \; \stackrel{\cong}{=} \; \frac{\overline{BC}}{\overline{CD}},$

Prove: ABCD is a trapezoid.

Given: ABCD is an isosceles trapezoid

AD || BC

M is the midpoint of \overline{BC}

Prove: ΔMAD is isosceles

Statements	Reasons

Given: ABCD is an isosceles trapezoid.

Prove: $\triangle ADC \cong \triangle BCD$

Statements	Reasons

Given: Isosceles Trapezoid RQPO (OR and PQ are bases.)

STATEMENT		REASONS
a. RQ	a.	
b. RO ≅	b.	
c. ∠O ≅	c.	
d. ∠Q ≅	d.	
e. Draw QO and RP	e. 2 points make a line	
f. QO ≅	f.	
g. ∠QRP ≅	g.	
h. ∠RQO ≅	h.	

Given: Trapezoid TRPA (AP and TR are bases)

STATEMENT	REASONS
a. TR	a.
b. ∠T and are supplementary	b.
c. ∠R and are supplementary	c.

Given: $\overline{HS} \cong \overline{SB}, \overline{RS} \cong \overline{SO}$

Prove: RHOB is a rhombus

<u>Statements</u>	Reasons
1.	1. Given
$2. \Delta \cong \Delta$	2. (,,)
3. RHOB is a Parallelogram	3 of a quadrilateral
	bisect each other →
4. RHOB is a Rhombus	4. ≅ sides of a
	Parallelogram → Rhombus

Write a two-column proof to prove that if ABCD is a rhombus with diagonal \overline{DB} , then $\overline{AP} \cong \overline{CP}$.

Statements	Reasons

Given: TBCD is a rhombus

∠RTB ≃ ∠FCB

Prove: $\overline{RD} \cong \overline{DF}$

Statements Reasons

Given: Rectangle WXYZ, M is the midpoint of \overline{WX} .

Prove: AZMY is isosceles.

Statements Reasons

Given: QTVW is a rectangle. $\overline{QR} \cong \overline{ST}$

Prove: $\triangle SWQ \cong \triangle RVT$

Reasons **Statements**

Find the value of each variable in the rhombus.

Given: ABCD is a rhombus.

diagonals AC, BD

Prove: ΔAED ≈ ΔAEB ≈

 $\triangle BEC = \triangle CED$

1 ABCD is a rhombus. 1 Given

2 Diagonals AC, BD 2 Given

 $3 \overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{DA}$ 3 All sides of a rhombus ≃.

4 AC, BD ⊥ bis each other. 4 Diag of rhombus L bis each other.

 $5 \overline{AE} \cong \overline{EC}, \overline{DE} \cong \overline{EB}$ 5 Bis divides a seg into 2 ≅ segs.

6 △AED ≈ △AEB ≈ 6 SSS

ΔBEC = ΔCED

Given: ABCD is a rhombus.

diagonals AC, BD

Prove: △AED ≈ △AEB ≈

 $\triangle BEC \cong \triangle CED$

1 ABCD is a rhombus. 1 Given

2 Diagonals AC, BD 2 Given

 $3 \overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{DA}$ 3 All sides of a rhombus \cong .

4 AC, BD ⊥ bis each other. 4 Diag of rhombus ⊥ bis each other.

5 AE ≈ EC, DE ≈ EB
5 Bis divides a seg into 2 ≈ segs.

 $6 \triangle AED = \triangle AEB = 6 SSS$

ΔBEC ≈ ΔCED

- Given: MPRS
 - $\overline{MO} \cong \overline{PO}$
- Prove: AROS is isos.
- 1 MPRS
- $2 \overline{MO} \cong \overline{PO}$
- $3 \overline{SM} \cong \overline{RP}$
- 4 ∠M is a rt ∠.
- 5 ZPisart Z.
- $6 \angle M \cong \angle P$
- 7 △SMO ≈ △RPO
- $8 \overline{SO} \approx \overline{RO}$
- 9 △ROS is isos.

- S R
- 1 Given
- 2 Given
- 3 Opp sides ≅ in a .
- 4 In a _____, all ∠s are rt ∠s.
- 5 Same as 4
- 6 All rt∠s are =.
- 7 SAS
- 8 CPCTC
- 9 An isos △ has 2 sides =.

Challenge

Given: YTWX is a □

 $\frac{\overline{YP} \perp \overline{TW}}{\overline{ZW} \perp \overline{TY}}$ $\overline{TP} \simeq \overline{TZ}$

Prove: YTWX is a rhombus

Statements	Reasons

Given: Rhombus RHOB

Prove: ∠HSR ≅ ∠HSO

Reasons

Given: ABCD is a rectangle M is midpoint of \overline{AB}

Prove: $\overline{DM} \cong \overline{CM}$

Statements Reasons

Given: Square SQUA

REASONS	
a.	
c.	
d. 2 points make a line	
f.	
g. h.	
	a. b. c. d. 2 points make a line e. f. g.

Given: Rhombus DEFG

STATEMENT	REASONS
a. DE ≅ EF ≅ FG ≅ GD b. ∠D ≅ ∠F, ∠E ≅ ∠G c. Draw DF d. ∠GDF ≅ ∠EDF e. ∠EFD ≅ ∠GFD f. Draw EG (to intersect DF at X) g. DF ⊥ h. EX ≅ and DX ≅	a. b. c. 2 points make a line d. e. f. 2 points make a line g. h.
11. EX = and DX =	""

heore	ms Properties of Rhombuses) Rhombi	
	THEOREM	HYPOTHESIS	CONCLUSION
6-4-3	If a quadrilateral is a rhombus, then it is a parallelogram. (rhombus $\rightarrow \Box$)	A D C	ABCD is a parallelogram.
6-4-4	If a parallelogram is a rhombus, then its diagonals are perpendicular. (rhombus → diags. ⊥)	A B C	ĀC ⊥ BD
6-4-5	If a parallelogram is a rhombus, then each diagonal bisects a pair of opposite angles. (rhombus → each diag. bisects opp. ≜)	A 87 65 D	∠1 ≅ ∠2 ∠3 ≅ ∠4 ∠5 ≅ ∠6 ∠7 ≅ ∠8

Theorems Properties of Rectangles

	THEOREM	HYPOTHESIS	CONCLUSION
6-4-1	If a quadrilateral is a rectangle, then it is a parallelogram. (rect. $\rightarrow \Box$)	B C D	ABCD is a parallelogram.
6-4-2	If a parallelogram is a rectangle, then its diagonals are congruent. (rect. → diags. ≅)	B C D	AC ≅ BD

Properties of Parallelograms

$$FG \cong HJ$$
 $GH \cong JF$

GP JH

Opposite angles are congruent.

$$\angle F \cong \angle H$$

 $\angle G \cong \angle J$

Opposite sides are congruent.

$$m \angle F + m \angle G = 180^{\circ}$$

$$m \angle G + m \angle H = 180^{\circ}$$

$$m \angle H + m \angle J = 180^{\circ}$$

$$m \angle J + m \angle F = 180^{\circ}$$

Consecutive angles are supplementary.

$$FP \cong \overline{HP}$$
 $GP \cong \overline{JP}$

The diagonals bisect each other.

Given: ABCD is a parallelogram

Statements	Reasons
a. $\overline{AB} \cong \underline{\hspace{1cm}}$ and $\overline{AD} \cong \underline{\hspace{1cm}}$	a.
b 4A ≅ and 4D ≅	b.
c. $\overline{AB} \parallel \underline{\hspace{1cm}}$ and $\overline{AD} \parallel \underline{\hspace{1cm}}$	c.
d. 4A suppl and 4C suppl and	d.
e. Draw \overline{AC} and \overline{BD} . (The lines intersect at E.)	e. Two Points Make a Line.
f. ∠BAC ≅ and ∠DAC ≅	f.
g. $\overline{AE} \cong \underline{\qquad}$ and $\overline{DE} \cong \underline{\qquad}$	g.

Given: ☐ ABCD DE ≅ FB

Prove: a) $\triangle DEA \cong \triangle BFC$

b) ∠1 ≅ ∠2

STATEMENT

REASONS

Parallelogram ABCD AD ≅ ∠D ≅ DE ≅ FB	1. Given 2. 3. 4. Given 5. 6.