GEOMETRY FORMULA SHEET - PAGE 1

Formulas that you may need to solve questions on this exam are found below. You may use calculator π or the number 3.14.

Properties of Circles

Angle measure is represented by x. Arc measure is represented by m and n. Lengths are given by a, b, c, and d.

Inscribed Angle

$$x=\frac{1}{2}n$$

Tangent-Chord

$$x=\frac{1}{2}n$$

2 Chords

$$a \cdot b = c \cdot d$$

$$x=\frac{1}{2}(m+n)$$

Tangent-Secant

$$a^2 = b(b+c)$$

$$x=\frac{1}{2}(m-n)$$

2 Secants

$$b(a+b) = d(c+d)$$
$$x = \frac{1}{2}(m-n)$$

2 Tangents

$$a = l$$

$$x=\frac{1}{2}(m-n)$$

Right Triangle Formulas

Pythagorean Theorem:

If a right triangle has legs with measures a and b and hypotenuse with measure c, then...

$$a^2 + b^2 = c^2$$

Trigonometric Ratios:

$$\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$$

$$\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$$

$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$$

Coordinate Geometry Properties

Distance Formula: $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Midpoint: $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$

Slope: $m = \frac{y_2 - y_1}{x_2 - x_1}$

Point-Slope Formula: $(y - y_1) = m(x - x_1)$

Slope Intercept Formula: y = mx + b

Standard Equation of a Line: Ax + By = C

GEOMETRY FORMULA SHEET - PAGE 2

Formulas that you may need to solve questions on this exam are found below. You may use calculator π or the number 3.14.

Plane Figure Formulas

$$P = 4s$$

 $A = s \cdot s$

$$P = 2l + 2w$$
$$A = lw$$

$$P = 2a + 2b$$
$$A = bh$$

$$P = a + b + c + d$$
$$A = \frac{1}{2}h(a+b)$$

$$P = b + c + d$$
$$A = \frac{1}{2}bh$$

$$C = 2\pi r$$

 $A = \pi r^2$

Sum of angle measures = 180(n-2), where n = number of sides

Solid Figure Formulas

$$SA = 2lw + 2lh + 2wh$$

 $V = lwh$

$$SA = 4\pi r^2$$
$$V = \frac{4}{3}\pi r^3$$

$$SA = 2\pi r^2 + 2\pi rh$$
$$V = \pi r^2 h$$

$$SA = \pi r^2 + \pi r \sqrt{r^2 + h^2}$$
$$V = \frac{1}{3}\pi r^2 h$$

$$SA = (Area of the base) + \frac{1}{2}(number of sides)(b)(\ell)$$

 $V = \frac{1}{3}$ (Area of the base)(h)

Euler's Formula for Polyhedra:

$$V-E+F=2$$

vertices minus edges plus faces = 2