Trigonometric Addition and Subtraction

EXAMPLE 1 = Using the Addition and Subtraction Formulas

Find the exact value of each expression.

(a) cos 75° (b) cos ;T—Z

SOLUTION

(a) Notice that 75° = 45° + 30°. Since we know the exact values of sine and cosine
at 45° and 30°, we use the Addition Formula for Cosine to get

cos 75° = cos(45° + 30°)
= cos 45° cos 30° — sin 45° sin 30°
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(b) Since ;T—Z = % — %, the Subtraction Formula for Cosine gives
cos — =cos| —— —
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= cos —cos — + sin —sin —
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Trigonometric Addition and Subtraction

EXAMPLE 2 © Using the Addition Formula for Sine
Find the exact value of the expression sin 20 cos 40° + cos 20° sin 40°.

SOLUTION We recognize the expression as the right-hand side of the Addition
Formula for Sine with s = 20° and r = 40°. So we have

V3

2

sin 20° cos 40° + cos 20° sin 40° = sin(20° + 40°) = sin 60° =

EXAMPLE 3 = Proving a Cofunction Identity
Prove the cofunction identity cos(% - u) = sin u.

SOLUTION By the Subtraction Formula for Cosine we have

T T L T
cos| ——u | =cos—cosu + sin—sinu
2 2 2

=0-cosu + l+sinu =sinu

For acute angles, the cofunction identity in Example 3, as well as the other cofunc-

cos (1 - zr) = 51 =sinu
tion identities, can also be derived from the figure in the margin.

EXAMPLE 4 = Proving an Identity

1 + tan>
Verify the identity litmv = mn(g + 1)
— tan x

SOLUTION = Starting with the right-hand side and using the Addition Formula for
Tangent, we get

o
lan 1 + tan x
RHS = tan(g + .\') =

T
| — tan — tan x
4
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| — tan x
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EXAMPLE5 = An Identity from Calculus

If f(x) = sin x, show that

flx +h) — f(x) . (cos h—1 ) (sin h)
I =smx|{ ——— | + cosx ;

h 1
SOLUTION
flx+h) — f(x) sin(x +h) — sinx
; = ; Definition of f
1

sinxcos h + cosxsinh — sin x N -
= Addition Formula for Sine

h

sinx (cosh — 1) + cos xsinh
= Factor

h

. cosh — 1 sin h ‘ -
= sin x 7){ + cos x h Separate the fraction
1
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Evaluating Expressions Involving Inverse
Trigonometric Functions

Expressions involving trigonometric functions and their inverses arise in calculus. In
the next examples we illustrate how to evaluate such expressions.

EXAMPLE 6 = Simplifying an Expression Involving Inverse
Trigonometric Functions

Write sin(cos_lx + tan_l_\') as an algebraic expression in x and v, where
—1 = x =1 and y is any real number.

SOLUTION Let 6 = cos 'x and & = tanfl_\'. Using the methods of Section 6.4,
we sketch triangles with angles @ and & such that cos 8 = x and tan ¢ = v (see
Figure 2). From the triangles we have

l '
cosp = ———— sin ¢ = )

I+ 3?2 VI + y?

sin @ = | —x?

From the Addition Formula for Sine we have

sin(cos™'x + tan”'y) = sin(6 + &)
Addition Formula
for Sine

) 1 y
1 = | = —t x—— From triangles
V14 V14 y?

| 1
= —(VI1 - x* + ) Factor ——
V1 +y? VI + oy

= sin 8 cos ¢ + cos 0 sin ¢

tan¢ =y
FIGURE 2
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EXAMPLE 7

Trigonometric Functions

Evaluating an Expression Involving

Evaluate sin(f + &), where sin 8 = 12 with 6 in Quadrant I and tan ¢ = 3 with ¢ in

Quadrant I1I.

SOLUTION  We first sketch the angles 6 and ¢ in standard position with terminal sides
in the appropriate quadrants as in Figure 3. Since sin 8 = y/r = 12, we can label a side

and the hypotenuse in the triangle in Figure 3(a). To find the remaining side, we use the

Pythagorean Theorem.

v+ v = r
Xt + 127 =137
x? =125

x = —35

Pythagorean Theorem

~ ~ 7
Solve for x~

Because x < 0

Similarly, since tan & = y/x = 3, we can label two sides of the triangle in Figure 3(b)
and then use the Pythagorean Theorem to find the hypotenuse.

P(x,y)

FIGURE 3

(a)

-y

P(x,y)

(b)

Now, to find sin(6 + ¢), we use the Addition Formula for Sine and the triangles in

Figure 3.

sin(6 + o)

- (&

33

- 6

n

4

(=5

sin 6 cos ¢ + cos 0 sin ¢

)+ (=5)(=3)

Addition Formula
From triangles

Calculate



