$$1.) \sin x = -\sin^2 x$$

Answers

$$1.) \sin x = -\sin^2 x$$

Solution:

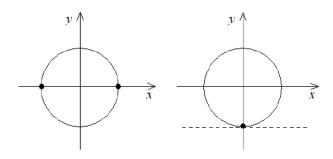
$$\sin x = -\sin^2 x \qquad \text{add } \sin^2 x$$

$$\sin^2 x + \sin x = 0 \qquad \text{factor out } \sin x$$

$$\sin x (\sin x + 1) = 0$$

$$\sin x = 0 \qquad \text{or} \qquad \sin x + 1 = 0$$

$$\sin x = -1$$



If $\sin x = 0$, then $x = k\pi$ where $k \in \mathbb{Z}$. If $\sin x + 1 = 0$, then $\sin x = -1$ and so $x = -\frac{\pi}{2} + 2k\pi$ where $k \in \mathbb{Z}$.

$$2.) \ 2\cos^2 x - 5\cos x = 3$$

Answers

2.)
$$2\cos^2 x - 5\cos x = 3$$

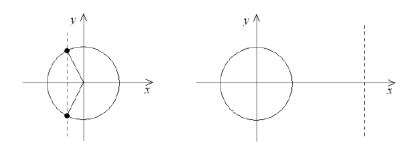
Solution: This equation is quadratic in $\cos x$. If helps, we may introduce a new variable, $a = \cos x$.

$$2\cos^2 x - 5\cos x = 3$$
 Let $a = \cos x$
$$2a^2 - 5a = 3$$

$$2a^2 - 5a - 3 = 0$$

$$(2a+1)(a-3) = 0 \implies a = -\frac{1}{2} \text{ or } a = 3$$

$$\cos x = -\frac{1}{2} \quad \text{or} \quad \cos x = 3$$



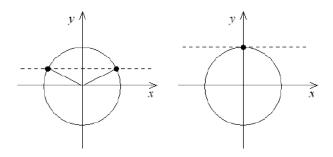
The solution of $\cos x = -\frac{1}{2}$ is $x = \pm \frac{2\pi}{3} + 2k\pi$. There is no solution of $\cos x = 3$.

3.)
$$3(1 - \sin x) = 2\cos^2 x$$

Answers

3.)
$$3(1 - \sin x) = 2\cos^2 x$$

Solution: After we write $\cos^2 x = 1 - \sin^2 x$, this equation will become quadratic in $\sin x$.



The solution of $\sin x = \frac{1}{2}$ is $x = \frac{\pi}{6} + 2k\pi$ and $x = \frac{5\pi}{6} + 2k\pi$ where $k \in \mathbb{Z}$. The solution of $\sin x = 1$ is x where $k \in \mathbb{Z}$.

$$4.) \sin x = -\cos x$$

Answers

$$4.) \sin x = -\cos x$$

Solution: Since neither $\sin x$ nor $\cos x$ is squared, it is difficult to eliminate either one of them. There are several methods to solve this equation. One method involves squaring both sides of the two equation and then eliminating one trigonometric-function in terms of the other. Notice that, because of the squaring, this method creates extraneous solutions so we have to carefully check our solution. The method presented here is a clever alternative.

Case 1 If
$$\cos x = 0$$

If $\cos x = 0$, then clearly $\sin x = \pm 1$ since $\sin x = \pm \sqrt{1 - \cos^2 x}$. Then x is clearly not a solution of the equation $\sin x = -\cos x$.

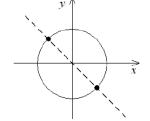
Case 2. If $\cos x \neq 0$, then we can divide by it.

$$\sin x = -\cos x$$

divide by $\cos x \neq 0$

$$\frac{\sin x}{\cos x} = -1$$

 $\tan x = -1$



The solution is $x = -\frac{\pi}{4} + k\pi$ where $k \in \mathbb{Z}$.

5.)
$$\tan^2 x = \frac{1}{3}$$

Answers

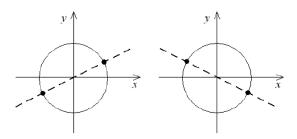
5.)
$$\tan^2 x = \frac{1}{3}$$

Solution:

$$\tan^2 x = \frac{1}{3}$$

$$\tan x = \pm \frac{1}{\sqrt{3}}$$

$$\tan x = \frac{1}{\sqrt{3}} \quad \text{or} \quad \tan x = -\frac{1}{\sqrt{3}}$$



The solution of $\tan x = \frac{1}{\sqrt{3}}$ is $x = \frac{\pi}{6} + k\pi$ where $k \in \mathbb{Z}$, and the solution of $\tan x = -\frac{1}{\sqrt{3}}$ is $x = -\frac{\pi}{6} + k\pi$ where $k \in \mathbb{Z}$.

Solve each of the following equations.

6.)
$$\cos x \sin x = \cos x$$

Answers

6.) $\cos x \sin x = \cos x$

Solution:

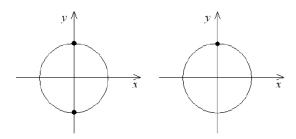
$$\cos x \sin x = \cos x$$
 subtract $\cos x$

$$\cos x \sin x - \cos x = 0$$
 factor out $\cos x$

$$\cos x (\sin x - 1) = 0$$

$$\cos x = 0$$
 or $\sin x - 1 = 0$

$$\cos x = 0$$
 or $\sin x = 1$



The solution of $\cos x=0$ is $x=\pm\frac{\pi}{2}+2k\pi$ where $k\in\mathbb{Z}$ (notice this can be written simpler, as $x=\frac{\pi}{2}+k\pi$) and the solution of $\sin x=\frac{\pi}{2}+2k\pi$ where $k\in\mathbb{Z}$. As the picture already indicates, the second case does not bring in any new solutions; if $\sin x=1$ then of course also $\cos x=0$. The final answer is $x=\frac{\pi}{2}+k\pi$ where $k\in\mathbb{Z}$.

Solve each of the following equations.

7.)
$$\tan x = \tan^2 x$$

8.)
$$2\cos x - \sin x + 2\cos x \sin x = 1$$

9.)
$$\cos x = 1 + \sin^2 x$$

10.)
$$7\sin x + 5 = 2\cos^2 x$$

Answers

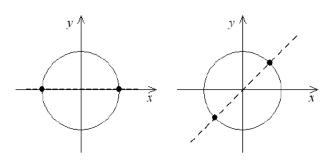
7.)
$$\tan x = \tan^2 x$$

Solution:

$$\tan x = \tan^2 x$$
 subtract $\tan x$
 $0 = \tan^2 x - \tan x$ factor out $\tan x$

$$0 \ = \ \tan x \left(\tan x - 1 \right)$$

$$\tan x = 0$$
 or $\tan x = 1$



The solution of $\tan x = 0$ is $x = k\pi$ where $k \in \mathbb{Z}$, and the solution of $\tan x = 1$ is $x = \frac{\pi}{4} + k\pi$ where $k \in \mathbb{Z}$.

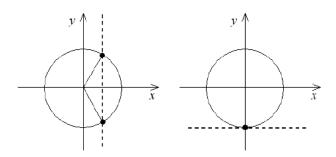
8.)
$$2\cos x - \sin x + 2\cos x \sin x = 1$$

Answers

8.)
$$2\cos x - \sin x + 2\cos x \sin x = 1$$

Solution:

$$\begin{array}{rclcrcl} 2\cos x - \sin x + 2\cos x \sin x & = & 1 & \text{subtract 1} \\ 2\cos x \sin x + 2\cos x - \sin x - 1 & = & 0 & \text{factor by grouping} \\ 2\cos x \left(\sin x + 1\right) - \left(\sin x + 1\right) & = & 0 & \\ & \left(2\cos x - 1\right) \left(\sin x + 1\right) & = & 0 & \\ & 2\cos x - 1 & = & 0 & \text{or} & \sin x + 1 & = & 0 \\ & \cos x & = & \frac{1}{2} & \text{or} & \sin x & = & -1 & \end{array}$$



If $\cos x = \frac{1}{2}$, then $x = \pm \frac{\pi}{3} + 2k\pi$ where $k \in \mathbb{Z}$. And if $\sin x = -1$, then $x = -\frac{\pi}{2} + 2k\pi$ where $k \in \mathbb{Z}$.

$$9.) \cos x = 1 + \sin^2 x$$

Answers

9.)
$$\cos x = 1 + \sin^2 x$$

Solution:

$$\cos x = 1 + \sin^2 x \qquad \qquad \sin^2 x = 1 - \cos^2 x$$

$$\cos x = 1 + 1 - \cos^2 x \qquad \text{add } \cos^2 x$$

$$\cos^2 x + \cos x = 2 \qquad \qquad \text{subtract } 2$$

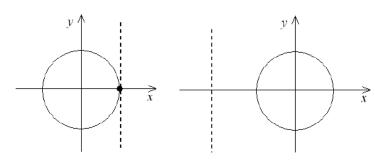
$$\cos^2 x + \cos x - 2 = 0 \qquad \qquad \text{factor}$$

$$(\cos x - 1)(\cos x + 2) = 0$$

 $\cos x = 1$

or

$$\cos x = -2$$



The solution of $\cos x = 1$ is $x = 2k\pi$ where $k \in \mathbb{Z}$, and the equation $\cos x = -2$ has no solution.

10.)
$$7\sin x + 5 = 2\cos^2 x$$

Answers

10.)
$$7\sin x + 5 = 2\cos^2 x$$

Solution:

$$7 \sin x + 5 = 2 \cos^{2} x \qquad \cos^{2} x = 1 - \sin^{2} x$$

$$7 \sin x + 5 = 2 (1 - \sin^{2} x) \qquad \text{distribute}$$

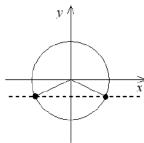
$$7 \sin x + 5 = 2 - 2 \sin^{2} x \qquad \text{add } 2 \sin^{2} x$$

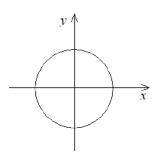
$$2 \sin^{2} x + 7 \sin x + 5 = 2 \qquad \text{subtract } 2$$

$$2 \sin^{2} x + 7 \sin x + 3 = 0 \qquad \text{factor}$$

$$(2 \sin x + 1) (\sin x + 3) = 0$$

 $\sin x = -3$





The solution of $\sin x = -\frac{1}{2}$ is $x = -\frac{\pi}{6} + 2k\pi$ and $x = -\frac{5\pi}{6} + 2k\pi$ where $k \in \mathbb{Z}$, and the equation $\cos x = \text{solution}$.