Parametric Coordinates and Equations Set 4

Word Problem Practice - Parametric Equations

1. PHYSICS A rock is thrown at an initial velocity of 5 meters per second at an angle of 8° with the ground. After 0.4 second, how far has the rock traveled horizontally?

$$X = (5 \cos 8^{\circ}) + (4) = (5 \cos 8)(4) = 1.981$$
 meters

- 2. PLAYING CATCH Tom and Sarah are playing catch. Tom tosses a ball to Sarah at an initial velocity of 38 feet per second at an angle of 28° from a height of 4 feet. Sarah is 40 feet away from Tom.
 - a. How high above the ground will the ball be when it gets to Sarah?

$$X = (38 \cos 28) t = 40$$

$$Y = -16t^{2} + (38 \sin 28)t + 4$$

$$E = 1.192$$

$$y(1.192) = -16(1.192)^{2} + (38 \sin 28)(1.192) + 4$$

$$= 2.531 \text{ feet}$$

b. What is the maximum height of the ball?

3. TENNIS Melinda hits a tennis ball with an initial velocity of 42 feet per second at an angle of 16° with the horizontal from a height of 2 feet. She is 20 feet from the net and the net is 3 feet high. Will the ball go over the net?

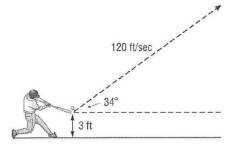
$$X = (42 \cos 16) t = 20$$
 $Y = -16t^2 + (425.416)t + 2$ 3.810 > 3
 $t = .495$ $Y(.495) = 3.810$ feet yes

4. BASKETBALL Mandy throws a basketball with an initial velocity of 28 feet per second at an angle of 60° with the horizontal. If Mandy releases the ball from a height of 5 feet, write a pair of equations to determine the vertical and horizontal positions of the ball.

$$X = (28 \cos 60) t$$

 $Y = -16t^2 + (28 \sin 60) t + 5$

Parametric Coordinates and Equations Set 4


5. GOLF Julio hit a golf ball with an initial velocity of 100 feet per second at an angle of 39° with the horizontal.

a. Write parametric equations for the flight of the ball.

$$X = (100 \cos 39) t$$

 $Y = -16 t^{2} + (100 \sin 39) t$

b. Find the maximum height the ball reaches.

6. BASEBALL Micah hit a baseball at an initial velocity of 120 feet per second from a height of 3 feet at an angle of 34°.

a. How far will the ball travel horizontally before it hits the ground?

$$Y = -16 t^{2} + (20 5.434) t + 3 = 0$$
 $x = (20 \cos 34) t$
 $t = (20 \cos 34) (4.336)$
 4.238 $= (20 \cos 34) (4.336)$
 4.238 $= 421.615$ feet

b. What is the maximum height the ball will reach?

c. If the fence is 8 feet tall and 400 feet from home plate, will the ball clear the fence to be a home run? Explain.

$$X = 120 \text{ Cel}(34)6 = 400$$
 $y(4.021) = 14.128 \text{ feet}$
 $t = 4.021$

$$14.128 78$$

$$yes, the base will dear the fence.$$