Parametric Equations

Up until this point we have been representing a graph by a single equation involving two variables x and y. Today we will introduce the use of a third variable, t, to represent a curve in the plane.

Why??

- Rectangular equations can identify where an object has been but do not tell you when the object was at a given point (x,y) on the path. To determine this time, we will introduce a third variable $_{\underline{x}}$, called a **parameter**. We will write both x and y as functions of t to obtain parametric equations.
- Because of this, parametric equations are useful for modeling situations involving position
 velocity
 and <u>acceleration</u>

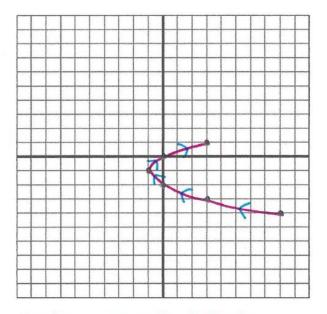
<u>Plane Curve</u>: If f and g are continuous functions of t on an interval I, the set of ordered pairs (f(t), g(t)) is a plane curve C. The equations x = f(t) and y = g(t) are parametric equations for C and t is the parameter.

Part One: Sketching a Plane Curve

Example 1: Sketch the curve represented by the parametric equations

$$x = t^2 - 2t$$
 and $y = t - 2$ $-2 \le t \le 3$

t	x	у	(x,y)
-2	$(-2)^2-2(-2)$	-2-2	(8,-4)
-1	$(-1)^2-2(-1)$	-1-2	(3,-3)
0	$(0)^2 - 2(0)$	0-2	(0,-2)
1	$(1)^2 - 2(1)$	1-2	(-1,-1)
2	$(2)^2 - 2(2)$	2-2	(0,0)
3	$(3)^2 - 2(3)$	3-2	(3,1)

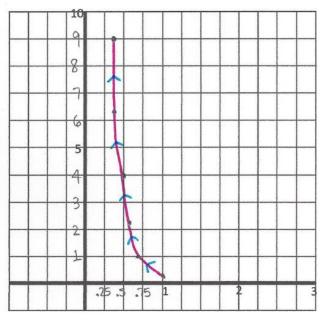


* place arrows to indicate the direction of the increasing values of t.

Example 2: Sketch the curve represented by the parametric equations

$$x = \frac{1}{\sqrt{t}}$$
 and $y = \frac{t^2}{4}$ $1 \le t \le 6$

t	X	у	(x,y)
	$\frac{1}{1} = 1$	$\frac{1^2}{4} = \frac{1}{4}$	(1,.25)
2	七三豆	$\frac{2^2}{4} = \frac{4}{4} = 1$	(.71,1)
3	1 = 13	$\frac{3^2}{4} = \frac{9}{4}$	(.58, 2.25)
4	$\frac{1}{\sqrt{4}} = \frac{1}{2}$	4= 16=4	(.5,4)
5	15 = 15	52 25 4	(.45, 6.25)
6	1 = 16	$\frac{6^2}{4} = \frac{36}{4} = 9$	(.41,9)



Part Two: Eliminating the Parameter (Find a rectangular equation)

To make graphing easier, sometimes it is helpful to eliminate the parameter to write a rectangular equation (in x and y) that has the same graph.

Steps:

- 1) Solve for t in one of the parametric equations
- 2) Substitute into the other parametric equation
- 3) Simplify

Example 3:

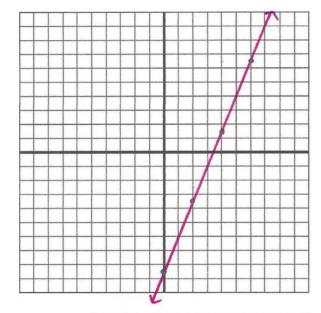
- a) Create a table of x- and y- values by adjusting the domain of the given functions. Then sketch the curve represented by the equations: $x = \sqrt{t-2}$ and y = 1+t
- b) Find the rectangular equation by eliminating the parameter. Sketch its graph.

 e) How do the graphs differ?

 a) Domain: $t \ge 2$ c) When you graph a rectangular equation, you lose the direction domain restrictions and you lose the direction in Which the graph is travelling as time increases in Which the graph is t = 1 + tb) t = 1 + t

You Try: Eliminate the Parameter and graph.

$$x = 3 + 2t$$
 and $y = -1 + 5t$
 $x = 3 + 2t$ and $y = -1 + 5t$
 $x = 3 + 2t$ and $y = -1 + 5t$
 $x = 3 + 2t$ and $y = -1 + 5t$
 $x = 3 + 2t$ and $y = -1 + 5t$
 $x = -1 + 5(x - 3)$
 $x = -1 + 5(x - 3)$



Example 4: Eliminating an Angle Parameter

Sketch the curve represented by

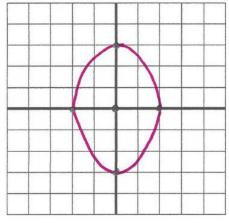
$$\frac{x}{2} = \frac{2\cos\theta}{2}$$
 and $\frac{y}{3} = \frac{3\sin\theta}{3}$ for $0 \le \theta \le 2\pi$.
 $\frac{x}{2} = \cos\theta$ $\frac{y}{3} = \sin\theta$

$$\sin^2 \theta + \cos^2 \theta = 1$$

$$\left(\frac{\sqrt{3}}{3}\right)^2 + \left(\frac{x}{2}\right)^2 = 1$$

$$\sqrt{2} + \sqrt{2} = 1$$

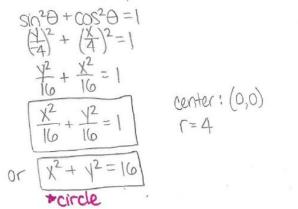
$$\sqrt{2}$$

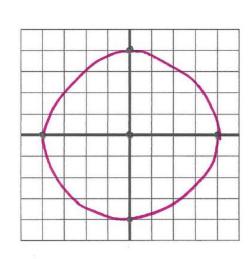


You Try: Eliminate the Parameter and graph.

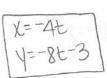
$$\frac{x}{4} = \frac{4 \cos \theta}{4} \text{ and } \frac{y}{-4} = \frac{-4 \sin \theta}{-4} \text{ for } 0 \le \theta \le 2\pi.$$

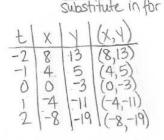
$$\frac{x}{4} = \cos \theta \qquad \frac{y}{-4} = \sin \theta$$

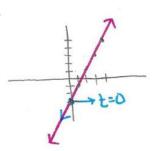




Part Three: Finding Parametric Equations for a Graph ** Parametric Equations come in PAIRS!** **Example 5:** Write parametric equations for the line y = 2x - 3 with x = -4t.



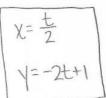




You Try: Write parametric equations for the line y = -4x + 1 with $x = \frac{t}{2}$.

$$y=-4(\frac{1}{2})+1$$

 $y=-2+1$



*Note

In the linear equation y = 2x - 3

is the INDEPENDENT variable

is the DEPENDENT variable

In parametric equations

t is the INDEPENDENT variable

X & are the DEPENDENT variables