Exponential and Logarithmic Equations

1. Solve
$$log_8 4x = 2 + log_8 (2x - 3)$$
.

2. Solve
$$log_7(x + 4) = 3 + log_7x$$
.

3. Solve:
$$ln(10 - 2x^2) = ln2 + ln5$$
.

Answers

1. Solve:
$$log_8 4x = 2 + log_8 (2x - 3)$$
.

Let's solve this equation by exponentiating both sides of the equation with a base of 8 to eliminate the logarithms and using the product rule for exponents.

$$8^{\log_8 4x} = 8^{2 + \log_8 (2x - 3)} = 8^2 \cdot 8^{\log_8 (2x - 3)}$$
$$4x = 64(2x - 3)$$
$$4x = 128x - 192$$
$$-124x = -192$$
$$x = \frac{192}{124} = \frac{48}{31}$$

Answer: $\frac{48}{31}$

2. Solve:
$$log_7(x + 4) = 3 + log_7x$$
.

Let's solve this equation by combining the logarithms first and then exponentiating both sides of the equation with a base of 7 to eliminate the logarithms.

$$log_{7}(x+4)-log_{7}x = 3$$
$$log_{7}\left(\frac{x+4}{x}\right) = 3$$
$$7^{log_{7}\left(\frac{x+4}{x}\right)} = 7^{3}$$
$$\frac{x+4}{x} = 343; \ 343x = x+4$$
$$342x = 4; \ x = \frac{4}{342} = \frac{2}{171}$$

Answer: $\frac{2}{171}$

9

3. Solve:
$$ln(10 - 2x^2) = ln2 + ln5$$
.

Let's combine the natural logarithms on the right side of the equation using logarithmic rules and then eliminate the logarithms.

$$\ln(10 - 2x^2) = \ln(2 \cdot 5) = \ln 10$$

$$e^{\ln(10 - 2x^2)} = e^{\ln 10}$$

$$10 - 2x^2 = 10; -2x^2 = 0; x = 0$$

Answer: 0

4. Solve:
$$log3 + logx = 2$$
.

5. Solve:
$$log8 + logx = 1$$
.

6. Solve:
$$log3x^2 - log3 = 2$$
.

Answers

4. Solve: log3 + logx = 2.

Let's solve this equation by exponentiating both sides using a base of 10 to eliminate the logarithms.

$$10^{log3+logx} = 10^2$$

$$10^{log3} \cdot 10^{logx} = 100$$

$$3x = 100$$
; $x = \frac{100}{3}$ or $33\frac{1}{3}$

Answer: $\frac{100}{3}$ or $33\frac{1}{3}$

5. Solve: log8 + logx = 1.

Let's combine the logarithms and then exponentiate both sides of the equation with a base of 10 to eliminate the logarithms.

$$log8x = 1$$

$$10^{log8x} = 10^{1}$$
; $8x = 10$; $x = \frac{10}{8} = \frac{5}{4}$

Answer: $\frac{5}{4}$

6. Solve: $log3x^2 - log3 = 2$.

Let's combine the logarithms on the left side of the equation and then exponentiate with a base of 10 to eliminate the logarithms.

$$\log\left(\frac{3x^2}{3}\right) = 2; \ \log(x^2) = 2$$

$$10^{log(x^2)} = 10^2$$
; $x^2 = 100$; $x = \pm 10$

Since neither -10 nor 10 cause the logarithm of a negative number, both numbers are accepted.

Answer: ± 10

7. Solve:
$$ln(5 - 2x) = 4 - ln9$$
.

8. Solve:
$$ln(3x - 1) = ln15 - ln4$$
.

9. Solve:
$$ln(4 - 4x) = ln5 - ln33$$
.

Answers

7. Solve:
$$ln(5 - 2x) = 4 - ln9$$
.

Let's exponentiate both sides with a base of *e* to eliminate the natural logarithms. Then, use the product rule for exponents to simplify the equation.

$$\rho^{\ln(5-2x)} = \rho^{4-\ln 9}$$

$$e^{\ln(5-2x)} = e^{4-\ln 9} = e^4 \cdot e^{\ln 9^{-1}}$$

$$5 - 2x = e^4 \cdot 9^{-1} = \frac{e^4}{9}$$

Solve for x by subtracting 5 and dividing by -2.

$$-2x = \frac{e^4}{9} - 5 = \frac{e^4 - 45}{9}$$

$$x = \frac{-e^4 + 45}{18}$$

This value does not cause the natural logarithm of a negative number. Answer: $\frac{-e^4+45}{18}$

8. Solve:
$$ln(3x - 1) = ln15 - ln4$$
.

Let's begin by combining the natural logarithms on the right side of the equation and then eliminating the logarithms.

$$\ln(3x - 1) = \ln\frac{15}{4}; \ 3x - 1 = \frac{15}{4}$$

Solve for x by adding 1 and dividing by 3.

$$3x = \frac{15}{4} + 1 = \frac{19}{4}; \ x = \frac{19}{12}$$

9. Solve:
$$ln(4-4x) = ln5 - ln33$$
.

Let's begin by combining the natural logarithms on the right side of the equation and then eliminating the logarithms.

$$\ln(4-4x) = \ln\frac{5}{33}; \ 4-4x = \frac{5}{33}$$

Solve for x by subtracting 4 and dividing by -4.

$$-4x = \frac{5}{33} - 4 = \frac{5}{33} - \frac{1324}{33} - \frac{127}{33}$$

$$127 \quad 1 \quad 127$$

$$x = -\frac{127}{33} \cdot -\frac{1}{4} = \frac{127}{132}$$

Answer: $\frac{127}{132}$

Answer: $\frac{19}{12}$

10. Solve:
$$log_3(4x - 2) = log_3(5 - 5x)$$
.

11. Solve:
$$log_7(4x - 5) = log_7(2x - 1)$$
.

12. Solve:
$$10 - log_3(x+3) = 10$$
.

Answers

10. Solve:
$$log_3(4x-2) = log_3(5-5x)$$
.

Since both sides of the equation contain a logarithm with the same base, exponentiate with a base of 3 to eliminate the logarithms.

$$3^{\log_3(4x-2)} = 3^{\log_3(5-5x)}$$

$$4x - 2 = 5 - 5x$$

Solve for x, which gives $x = \frac{7}{9}$

Answer: $\frac{7}{9}$

11. Solve:
$$log_7(4x - 5) = log_7(2x - 1)$$
.

Since both sides of the equation contain a logarithm with the same base, exponentiate with a base of 7 to eliminate the logarithms.

$$7^{\log_7(4x-5)} = 7^{\log_7(2x-1)}$$

$$4x - 5 = 2x - 1$$

Solve for x, which gives x = 2.

Answer: 2

12. Solve:
$$10 - log_3(x+3) = 10$$
.

Let's begin by subtracting 10 from both sides and divide both sides by 0.

$$-log_3(x+3) = 10 - 10 = 0; log_3(x+3) = 0$$

Now, exponentiate both sides with a base of 3 to eliminate the logarithm and solve for x.

$$3^{\log_3(x+3)} = 3^0$$
: $x + 3 = 1$: $x = -2$

The negative answer does not cause a logarithm of a negative number.

Answer: -2

13. Solve:
$$\ln(x^2 + 12) = \ln(-9x - 2)$$
.

14. Solve:
$$log_3(x+6) = log_3 2 + log_3 x$$
.

15. Solve:
$$log_5(x+1) = log_5 29 + log_5 x$$
.

Answers

13. Solve:
$$\ln(x^2 + 12) = \ln(-9x - 2)$$
.

Since both sides of the equation are the natural logarithm, exponentiate with a base of e to eliminate the natural logarithm.

$$e^{\ln(x^2+12)} = e^{\ln(-9x-2)}$$
$$x^2 + 12 = -9x - 2$$
$$x^2 + 9x + 14 = 0$$
$$(x+2)(x+7) = 0$$

Solve for x by factoring, and x = -2, x = -7. Neither answer is extraneous.

Answer: -7, -2

14. Solve:
$$log_3(x+6) = log_3 2 + log_3 x$$
.

Let's solve this equation by combining the logarithms on the right side of the equation and then exponentiating with a base of 3 to eliminate the logarithms. Then, solve for x.

$$log_3(x + 6) = log_3 2x$$

 $3^{log_3(x+6)} = 3^{log_3 2x}$
 $x + 6 = 2x; \ x = 6$

Answer: 6

15. Solve:
$$log_5(x+1) = log_5 29 + log_5 x$$
.

Let's combine the logarithms on the right side of the equation and then exponentiate with a base of 5 to eliminate the logarithms. Then, solve for x.

$$log_5(x+1) = log_5 29x$$
$$5^{log_5(x+1)} = 5^{log_5 29x}$$

$$x + 1 = 29x$$
; $1 = 28x$; $x = \frac{1}{28}$

Answer: $\frac{1}{28}$

16. Solve: $log_96 + log_92x^2 = log_948$.

17. Solve: ln(x - 3) = ln(x - 5) + ln5.

18. Solve: 2logx = log 37 - log 7.

Answers

16. Solve: $log_96 + log_92x^2 = log_948$.

Let's combine the logarithms on the left side. Then, exponentiate both sides with a base of 9 to eliminate the logarithms. Next, solve for x.

$$log_9 12x^2 = log_9 48$$

$$9^{log_9 12x^2} = 9^{log_9 48}$$

$$12x^2 = 48; \ 12x^2 - 48 = 0; \ 12(x^2 - 4) = 0$$

$$12(x+2)(2-2) = 0; \ x = -2, x = 2$$

Neither number causes us to take the logarithm of a negative number.

Answer: -2, 2

17. Solve:
$$\ln(x-3) = \ln(x-5) + \ln 5$$
.

Let's combine the natural logarithms on the right side of the equation. Then, exponentiate both sides of the equation with a base of e.

$$\ln(x-3) = \ln[5(x-5)]$$

$$e^{\ln(x-3)} = e^{\ln[5(x-5)]}$$

$$x-3 = 5(x-5)$$

$$x-3 = 5x-25; \ 4x = 22; x = \frac{22}{4} = \frac{11}{2}$$

Solving for x gives $x = \frac{11}{2}$

Answer: $\frac{11}{2}$

Answers

18. Solve: 2logx = log 37 - log 7.

Let's combine the logarithms on the right side of the equation and apply the exponent rule for logarithms on the left side.

$$log x^2 = log \frac{37}{7}$$

Exponentiate both sides with a base of 10.

$$10^{\log x^2} = 10^{\log \frac{37}{7}}; \ x^2 = \frac{37}{7}$$

Solving for x gives $x=-\sqrt{\frac{37}{7}}$, $x=\sqrt{\frac{37}{7}}$. The negative value causes the logarithm of a negative number, so that answer is eliminated.

Answer: $\sqrt{\frac{37}{7}}$

Answers

19. Solve: $\log(2x+1) = 1 + \log(x-2)$.

20. Solve: log x + log(x + 15) = 2.

19. Solve:
$$\log(2x + 1) = 1 + \log(x - 2)$$
.

Let's exponentiate both sides of the equation with a base of 10 and use the product rule for exponents to simplify the equation.

$$10^{\log(2x+1)} = 10^{1+\log(x-2)}$$

$$10^{\log(2x+1)} = 10^1 \cdot 10^{\log(x-2)}$$

$$2x + 1 = 10(x - 2)$$

$$2x + 1 = 10x - 20$$

Solve for x, which gives $x = \frac{21}{8}$.

Answer: $\frac{21}{8}$

20. Solve:
$$log x + log(x + 15) = 2$$
.

Let's solve this equation by combining the logarithms on the left side of the equation and then exponentiating the equation with a base of 10 to eliminate the logarithm.

$$\log[x(x+15)] = 2$$

$$10^{\log[x(x+15)]} = 10^{2}$$

$$x(x+15) = 100; \ x^{2} + 15x = 100$$

$$x^{2} + 15x - 100 = 0$$

$$(x+20)(x-5) = 0$$

Solve for x and we find that x = -20, x = 5.

The value -20 causes us to take the logarithm of a negative number, so that answer is eliminated.

Answer: 5