Learning Targets:

- A. Write and apply continuous growth/decay models
- B. Sketch the graphs of exponential functions
- C. Solve equations using exponents
- D. Evaluate and approximate logarithms
- E. Sketch the graphs of logarithmic functions
- F. Simplify expressions or solve equations using properties of logs
- G. Solve exponential equations using logarithms

True or false (write the entire word)

For the expression $\log_b a = p$

- 1. _____ The value of *a* must be positive.
- 2. _____ The value of b must be positive.
- 3. _____The value of *p* must be positive.
- 4. Write $8^2 = 16$ in logarithmic form.

5. Write log 100 = 2 in exponential form.

Evaluate each of the following.

6.
$$2\log_4 2 + \log_8 2$$

7.
$$\log_5 80 - 2\log_5 4$$

8.
$$\log_3 3^4$$

9.
$$10^{2\log 5}$$

10.
$$\ln e^5$$

Answers

1. True 2. True 3. False 4. $\log_8 16 = 2$ 5. $10^2 = 100$ 6. $\frac{4}{3}$ 7. 1

8. 4 9. 25 10. 5 11. 4

Express the following as a single logarithm (condense).

12.
$$\frac{2}{3}\log 27 + \log x + \log x$$

13.
$$\frac{1}{3}(\ln x - 2\ln y)$$

Expand each logarithm completely.

14.
$$\ln \frac{2x}{5}$$

15.
$$\log_3(7x^2)$$

Solve each of the following for x.

16.
$$\log_x 27 = 3$$

17.
$$\log_9 3 = x$$

18.
$$2^{x+3} = \frac{1}{16}$$

19.
$$2\log_2 x - \log_2(x+3) = 2$$

20.
$$\log_5(x^2 - 24x) = 2$$

21.
$$\log_6(x-3) + \log_6(x+2) = 1$$

22.
$$\ln(x+3) - \ln(x+5) = \ln\left(\frac{7}{8}\right)$$

23.
$$\log_3(2x+1) + \log_3(x-2) = \log_3 18$$

Answers

$$12. \log(9x^2)$$

12.
$$\log(9x^2)$$
 13. $\ln\left(\sqrt[3]{\frac{x}{y^2}}\right)$

14.
$$\ln 2 + \ln x - \ln 5$$

14.
$$\ln 2 + \ln x - \ln 5$$
 15. $\log_3 7 + 2\log_3 x$ 16. $x = 3$ 17. $x = \frac{1}{2}$

16.
$$x = 3$$

17.
$$x = \frac{1}{2}$$

18.
$$x = -7$$

18.
$$x = -7$$
 19. $x = -2$, 6 20. $x = -1$, 25 21. $r = -2$, 4 22. $x = 11$

20.
$$x = -1$$
. 25

21.
$$r = 3, 4$$

22.
$$x = 11$$

23.
$$x = \frac{5}{2}$$
, 4

Sketch the graph of each. State two points and the asymptote.

24. Graph
$$y = \log_{\frac{1}{3}}(x+3)$$

point:

additional point: _____

asymptote:_____

25. Graph
$$y = \ln(x - 2)$$

point:

additional point:

asymptote:_____

26. Graph
$$y = \left(\frac{3}{4}\right)^{x-1} + 2$$

point: _____

additional point: _____

asymptote:____

27. Graph $y = e^{x+1} - 5$

point:

additional point:

asymptote:_____

Answers

24.
$$(-2, 0)$$
; $(0, -1)$; $x = -3$ 25. $(3, 0)$; $(4.7, 1)$; $x = 2$

26.
$$\left(0, \frac{10}{3}\right)$$
; $\left(1, 3\right)$; $y = 2$ 27. $\left(0, -2.3\right)$; $\left(-1, -4\right)$; $y = -5$

Solve each of the following for x. Write answers in exact form and rounded to four decimal places.

28.
$$\log_{x+1} 25 = 2$$

29.
$$x = \log_3 117$$

30.
$$6e^{4x} = 72$$

31.
$$6^x = 65$$

32.
$$2500 = 1250e^{.07x}$$

33.
$$2^{5x-1} = 7^x$$

34.
$$\log_2(-7) = x$$

35.
$$32.5 = e^x$$

36.
$$\ln 1.8 = \ln e^{0.03x}$$

37.
$$\ln 12 - \ln x = 4$$

Answers

28.
$$x = 4$$
,

29.
$$x = \frac{\log 117}{\log 3} \approx 4.3347$$
 30. $x = \frac{\ln 12}{4} \approx 0.6212$

30.
$$x = \frac{\ln 12}{4} \approx 0.6212$$

31.
$$x = \frac{\log 65}{\log 6} \approx 2.3298$$

32.
$$x = \frac{\ln 2}{0.07} \approx 9.9021$$

32.
$$x = \frac{\ln 2}{0.07} \approx 9.9021$$
 33. $x = \frac{\log 2}{\log\left(\frac{32}{7}\right)} \approx 0.4561$

35.
$$x = \ln 32.5 \approx 3.481$$

35.
$$x = \ln 32.5 \approx 3.4812$$
 36. $x = \frac{\ln 1.8}{0.03} \approx 19.5929$ 37. $x = \frac{12}{e^4} \approx 0.2198$

37.
$$x = \frac{12}{e^4} \approx 0.2198$$

38. If \$450 is deposited into an account paying $4\frac{3}{4}\%$ interest compounded quarterly, how long will it take for the investment to reach \$2000? Use logarithms and round to two decimal places.

39. There are currently 1000 micrograms of bacteria in a petri dish, if the bacteria grows at a rate of .365 micrograms per day, how many micrograms were initially in the dish 2 weeks ago?

40. A particular strain of bacteria grows from 2 bacteria to 500 bacteria in 3 hours. Find k. Useful formula: $F = Pe^{kt}$ Round the answer to four decimal places.

Answers

38. $t \approx 31.59 \ years$

39. 6.04 bacteria

40. $k \approx 1.8405$