TRIGONOMETRY Solve for $0 \le \theta \le 2\pi$ without using a calculator:

1.
$$\sin \theta = -\frac{1}{2}$$
 2. $\csc \theta = \sqrt{2}$ 3. $\tan \theta = -1$ 4. $\cos \theta = -2$

2.
$$\csc\theta = \sqrt{2}$$

3.
$$\tan \theta = -1$$

4.
$$\cos\theta = -2$$

Solve for θ in degrees giving <u>all</u> solutions.

5.
$$\sin \theta = -1$$

5.
$$\sin \theta = -1$$
 6. $\cos \theta = -\frac{\sqrt{3}}{2}$ 7. $\tan \theta = \text{undefined}$

7.
$$\tan \theta = \text{undefined}$$

Give the exact value of each expression.

8.
$$Tan^{-1}\sqrt{3}$$

9.
$$\cot\left(Sin^{-1}\frac{1}{2}\right)$$

8.
$$Tan^{-1}\sqrt{3}$$
 9. $\cot\left(Sin^{-1}\frac{1}{2}\right)$ 10. $\sec\left(Cos^{-1}\left(-\frac{3}{5}\right)\right)$

11. Given
$$y = \frac{1}{3} \sin \frac{1}{2} x$$
, find

- a. amplitude
- b. period
- c. graph at least two periods of the function

Answers

1.
$$\frac{7\pi}{6}, \frac{11\pi}{6}$$
 2. $\frac{\pi}{4}, \frac{3\pi}{4}$ 3. $\frac{3\pi}{4}, \frac{7\pi}{4}$

2.
$$\frac{\pi}{4}, \frac{3\pi}{4}$$

3.
$$\frac{3\pi}{4}, \frac{7\pi}{4}$$

5.
$$270^{\circ} \pm 360^{\circ}n$$
 6. $\frac{150^{\circ} \pm 360^{\circ}n}{210^{\circ} \pm 360^{\circ}n}$ 7. $90^{\circ} \pm 180^{\circ}n$ 8. $\frac{\pi}{3}$, 60°

8.
$$\frac{\pi}{3}$$
, 60°

9.
$$\sqrt{3}$$
 10. $-\frac{5}{3}$ 11a. $\frac{1}{3}$ 11b. 4π

11a.
$$\frac{1}{2}$$

TRIGONOMETRY

12. Given:
$$y = -4 + 2\cos(3\left(x - \frac{\pi}{2}\right))$$
, find

- a. Amplitude
- b. Period
- c. Phase shift
- d. Vertical shift
- e. graph at least two periods of the function

- 13. Simplify: $(1-\sin\theta)(1+\csc\theta)\sin\theta$
- 14. Prove: $\frac{\sec\theta + \csc\theta}{1 + \tan\theta} = \csc\theta$
- 15. Solve: $2\cos^2\theta = 1 + \sin\theta$ for θ if $0 \le \theta \le 2\pi$.
- 16. Solve for x: $\sqrt{2}\cos x 1 = 0$, $0 \le x \le 2\pi$.

16)____

- 17. Solve a right triangle ABC, if a = 6 and $\angle A = 30^{\circ}$. (Give exact lengths.)
- 18. A boy flying a kite is standing 20 ft from a point directly under the kite. If the string to the kite is 40 ft long, find the angle of elevation of the kite.
- 19. An airplane is at an elevation of 30,000 ft and approaches the airport with an angle of descent of 5°. What is the distance between the airport and the point on the ground directly below the airplane?

Answers

12a. 2 **12b**. $\frac{2\pi}{3}$

12c. $\frac{\pi}{2}$ **12d.** -4

13. $\cos^2 \theta$ **14**. answers will vary **15**. $\frac{\pi}{6}, \frac{5\pi}{6}, \frac{3\pi}{2}$ **16**. $\frac{\pi}{4}, \frac{7\pi}{4}$

17. $\angle B = 60^{\circ}; b = 6\sqrt{3}; c = 12$

18. 60° **19**. 3429016 ft.

TRIGONOMETRY

- 20. Given \triangle ABC with a = 30, b = 20, c = 40, find the largest angle.
- 21. The captain of a clipper ship spots two other ships on the ocean. One ship is 5 miles away while the other is 5.2 miles away. The angle between the two sightings is 20°. How far apart are the two observed ships? (to three decimals)
- 22. In $\triangle RST$, $\angle R = 137^{\circ}$, t = 15, and s = 12. Find r to the nearest integer.
- 23. If $\triangle ABC$ has b = 30, $\angle C = 40^{\circ}$ and $\angle A = 60^{\circ}$, find a to the nearest tenth.
- 24. Two angles of a triangle measure 29° and 51°. The longest side is 55cm. Find the length of the shortest side to the nearest tenth.
- 25. Solve for \triangle ABC if a = 15, c = 18, and $\angle A$ = 32°.

C = _____

B =

b =

OR (if two triangles)

C =

B =

b =

- 26. Find the area of $\triangle ABC$ if b = 32, c = 27, and $\angle A$ = 108°.
- 27. The area of \triangle PQR is 15. If p = 5 and q= 10, find all possible measures of \angle R.

Answers

. 104.5°

. 1.782 miles

. 25

. 26.4

. 27.1

25. $\angle C = 39^{\circ}$; $\angle B = 109^{\circ}$; b = 27.0 or $\angle C = 141^{\circ}$; $\angle B = 7^{\circ}$; b = 3.5

. 410.86

. 36.9° or 143.1°

TRIGONOMETRY

- 28. Find the area of a regular pentagon inscribed in a circle with radius 15.
- 29. The sides of an isosceles triangle have lengths 7, 10 and 10. What are the measures of its angles?
- 30. At a distance of 200 meters, the angle of elevation to the top of a building is 70°. Approximately how tall is the building?
- 31. Two ships leave a port on courses that differ by 70° and each travels at 25 knots. In terms of nautical miles, how far apart are the ships after 1 hour?
- 32. After leaving an airport, a plane flies for 1.75 hours at a speed of 200 k/h on a course of 100°. The plane then flies for 2 hours at a speed of 250 k/h on a course of 40°. At this time, how far from the airport is the plane?
- 33. Find the exact value of the following:
 - a. cos 75°
- b. sin 105°
- 34. Simplify the following:
 - - $\cos 75^{\circ} \cos 15^{\circ} \sin 75^{\circ} \sin 15^{\circ}$ b. $\sin (30^{\circ} + x) + \sin (30^{\circ} x)$
- Suppose angle A is acute and $\cos A = \frac{5}{13}$. Find: 35.
 - $\sin A$ a.
- b. $\cos 2A$
- C. $\sin 2A$

- 36. Simplify the following:
 - a.
- $\frac{1+\cos 2x}{\sin 2x}$ b. $(1+\cot^2 x)(\cos 2x+1)$ c.

Answers

33a.
$$\frac{\sqrt{6}-\sqrt{2}}{4}$$

33b.
$$\frac{\sqrt{6} + \sqrt{2}}{4}$$

34a.
$$\cos 90^{\circ} = 0$$

35a.
$$\frac{12}{13}$$

35b.
$$-\frac{119}{169}$$

35c.
$$\frac{120}{169}$$

36b.
$$2\cot^2 x$$

$$36c. \quad \frac{\sin x}{1 - \cos x}$$

TRIGONOMETRY

37. Evaluate the given expression:
$$1-2\sin^2\frac{5\pi}{12}$$

38. Prove:
$$(1 + \tan^2 x)(1 + \cos 2x) = 2$$

39. Solve the following for
$$0 \le x < 2\pi$$
.

a.
$$\cos 2x = \sin x - 2$$

$$\cos 2x = \sin x - 2$$
 b. $2\sin^2 x = 3\cos x + 3$

c.
$$\sin x \tan x = 2 \sin x$$

Answers

37.
$$-\frac{\sqrt{3}}{2}$$

38. answers will vary

39a. $\frac{\pi}{2}$

39b.
$$\pi, \frac{2\pi}{3}, \frac{4\pi}{3}$$

39c. 0π , π , 1.11, 4.25