96.	Use the first and second derivative to identify the <u>local max and min</u> , <u>inflection point/s</u> determine the intervals where the curve is concave up and concave down . Then graph to
	function. (DO NOT USE A GRAPHING CALCULATOR).
	$f(x) = x^3 - 3x^2 - 9x + 27$

Local Max				
Local Min				
Pt. of Inflection				
Interval/s:				
Concave Up				
Concave Down				

Answers

96. Local Max=(-1,32) Local Min= (3,0) Point of inflection=(1,16)

Concave Up: (1,∞)

Concave Down: (-∞,1)

97.		is thrown upward from the top of an 80 ft building so that its height in feet above the d after t seconds is $h(t) = 80 + 64t - 16t^2$.		
	a.	What is the instantaneous velocity at $t=1$ second?		
	b.	When is the velocity = 0?		
	C.	What is the ball's maximum height above the ground?		
	d.	When does the ball hit the ground?		
	e.	For what values of t is the ball falling?		
Use derivatives to solve.				
98.		umber 120 is divided into two parts such that the product of one number times the e of the other is a maximum. Determine the two numbers.		
99.		ards of fencing is used to enclose a rectangular field with a fence down the middle el to one of the sides. What is the maximum area which can be enclosed?		
100.	at the	lboard poster is to have 50 square inches of printed material surrounded by a 2" border top, 2" at the bottom and 1" on each side. Find the minimum dimensions of the poster has a minimum area.		
101.	If the I	en square-base box is to be manufactured from the least amount of material. box is to have a volume of 32 cubic meters, what dimensions will minimize nount of material used?		

Answers

97a. 32

97b. 2 sec.

97c. 144 ft

97d. 5 sec.

97e. 2< *t* < 5

98. 80 and 40

99. $26,666\frac{2}{3} \text{ yds}^2$

100. 7 inches x 14 inches **101**. 4 x 4 x 2