1. Simplify each of the following expressions.

a)
$$\frac{3^{2x+1}}{0^{x-1}}$$

b)
$$\frac{\left(8^{b-2}\right)\left(2^{b+1}\right)}{4^{2b-3}}$$

c)
$$5^{2x-3} \cdot 25^{1-3}$$

2. Solve each of the following equations.

a)
$$5^{x-2} = 4$$

e)
$$3 \cdot 2^{2x-3} = 2 \cdot 5^{x+2}$$

i)
$$9^x - 3^{x+1} = 4$$

b)
$$5e^{-3x} = 42$$

e)
$$3 \cdot 2^{2x-3} = 2 \cdot 5^{x+2}$$

f) $9^x + 4 \cdot 3^x = 5$
g) $e^{2x} - 7e^x + 10 = 0$

$$j^*) 9^x - 4 \cdot 6^x + 3 \cdot 4^x = 0$$

c)
$$2^{2x-3} = 5^{2-x}$$

d) $5 \cdot 3^{2x-1} = 2^{2-x}$

h)
$$4^x - 2^{x+2} = -3$$

$$k^*$$
) $4^x + 200 \cdot 25^x = 30 \cdot 10^x$

3. We placed \$1000 in a bank account with an annual compound interest rate of 8%. How long will it take until we have \$5000 in the account?

4. If we take Q amount of a certain medication, the amount of it in our system, t hours after intake is

$$A\left(t\right) = Q \cdot 0.8^{t}$$

- a) Approximately what percent of the mediaction is in our system 2 hours after taking it?
- b) How long until we have only 20% left in our system?
- c) How long until we have only 1% left in our system?

5. The number of cells in a sample at time t (measured in hours) is $N(t) = 50\,000\,\left(1.6^{0.5t}\right)$.

- a) How many cells are there at t = 0?
- b) How long will it take for the sample to double from the time t = 0?
- c) How many cells are there at t = 4?
- d) How long will it take for the sample to double from the time t = 4?
- e) Suppose that t_1 and t_2 are given such that $N(t_2) = 2N(t_1)$. Prove that the difference $t_2 t_1$ is constant.

Answers

1. a) 27 b) 2 c)
$$\frac{1}{5}$$
 d) $\frac{\sqrt{3}}{2} \left(\frac{2}{3}\right)^x$

$$2. \ \, \mathrm{a)} \ \, x = \log_5 100 = \frac{\ln 4}{\ln 5} + 2 \qquad \ \, \mathrm{b)} \quad x = \frac{1}{3} \ln \left(\frac{5}{42} \right) = \frac{\ln 8.4}{-3} \qquad \ \, \mathrm{c)} \ \, x = \log_{20} 200 = \frac{\ln 200}{\ln 20}$$

$$\mathrm{d)} \ \log_{18}\left(\frac{12}{5}\right) = \frac{\ln\left(\frac{12}{5}\right)}{\ln 18} \qquad \mathrm{e)} \ \log_{4/5}\left(\frac{400}{3}\right) = \frac{\ln\left(\frac{400}{3}\right)}{\ln\left(\frac{4}{5}\right)} \qquad \mathrm{f)} \ x = 0 \quad \mathrm{g)} \ \ln 2 \ \mathrm{and} \ \ln 5$$

h) 0 and
$$\log_2 3$$
 i) $\log_3 4$ j*) 0, $\frac{\ln 3}{\ln \left(\frac{3}{2}\right)}$ k*) $\log_{2/5} 20$ and $\log_{2/5} 10$.

3. during the 21st year $(x = \frac{\ln 5}{\ln 1.08} \approx 20.91237188)$

$$4. \ a) \ 64\% \qquad b) \ \frac{\ln 0.2}{\ln 0.8} \approx 7.212\,567 \; hours \qquad c) \quad \frac{\ln 0.01}{\ln 0.8} \approx 20.6377 \; hours$$

$$5. \ a) \ 50\,000 \qquad b) \ \frac{\ln 2}{0.5 \ln 1.6} \approx 2.\,95 \ hours \qquad c) \ 128\,000 \qquad d) \ 2.\,95 \ hours \qquad e) \ see \ solutions$$

1. Simplify each of the following expressions so that there is at most one exponential expression is in the answer, with an exponent of x.

a)
$$2^{2x+3}$$

$$\begin{array}{ll} \mathrm{e)} & \frac{2^{x-1} \cdot 5^{x+2}}{10^{x-2}} \\ \mathrm{f)} & \frac{2^{2x+1} \cdot 3^{x-1}}{6^{x-1}} \end{array}$$

i)
$$\sqrt{\frac{3^{x-1} \cdot 6^{x+2}}{2^{x-3}}}$$

b)
$$5 \cdot 3^{2-x}$$

f)
$$\frac{2^{2x+1} \cdot 3^x}{6^{x-1}}$$

c)
$$\frac{2^{x-2}}{5 \cdot 3^{2x+1}}$$

g)
$$\frac{5 \cdot 12^{m+1}}{3^{m-1} \cdot 2^{2m+1}}$$

j)
$$\sqrt{2^{10x}} \cdot \left(\frac{1}{8}\right)^{x-2} \cdot 4^{-x-1}$$

d)
$$\frac{3 \cdot 5^{2x+1}}{2^{4-x}}$$

h)
$$\left(\frac{1}{5}\right)^{2p-3} 25^{p-3}$$

$$k) \sqrt{\frac{2^{6x} \cdot 5^{8x-2}}{10^{6x+2}}}$$

2. Solve each of the following equations.

a)
$$2 \cdot 3^{x-5} - 7 = 23$$

e)
$$3^x + \frac{9}{3^x} = 10$$

$$j) \ 5 \cdot 2^{3x-1} = 3 \cdot 5^{2-x}$$

b)
$$3e^{2x} - 8 = 13$$

$$f^*$$
) $4^x - 7 \cdot 10^x + 10 \cdot 5^x = 0$

k)
$$4 \cdot 3^{x-2} = 6^{x+1}$$

c)
$$4^x - 2^x - 12 = 0$$

$$g(y) = \sum_{i=1}^{n} x_i + \sum_{$$

$$1) \quad 9^x - 3^{x+1} = 54$$

d)
$$\left(\frac{1}{9}\right)^x - \frac{6}{3^x} + 8 = 0$$

e)
$$3^{x} + \frac{9}{3^{x}} = 10$$

f*) $4^{x} - 7 \cdot 10^{x} + 10 \cdot 5^{x} = 0$
g) $5^{x-2} = 2^{2x+3}$
h*) $6 \cdot 4^{x} - 13 \cdot 6^{x} + 6 \cdot 9^{x} = 0$
i) $e^{2x} + e^{x} = 6$
j) $5 \cdot 2^{3x-1} = 3 \cdot 5^{2}$
k) $4 \cdot 3^{x-2} = 6^{x+1}$
l) $9^{x} - 3^{x+1} = 54$
m) $\frac{10^{x+2}}{2^{x-3}} = 5^{x+1}$

m)
$$\frac{10^{x+2}}{2^{x-3}} = 5^{x+1}$$

3. We placed \$50 in a bank account with an annual compound interest rate of 13%. How long will it take until the account contains

4. If we take Q amount of a certain medication, the amount of it in our system, t hours after intake is

$$A\left(t\right) = Q \cdot \left(\frac{7}{8}\right)^{t}$$

- a) Approximately what percent of the mediaction is in our system 5 hours after taking it?
- b) How long until we have 60% left in our system?
- c) How long until we have only 1% left in our system?
- d) How long does it take for the drug to reduce to half? (This is called the half-life of the drug.)
- 5. The number of cells in a sample at time t (measured in hours) is $N(t) = 100\,000\,\left(1.4^{0.3t}\right)$.
 - a) How many cells are there at t = 0?
 - b) How long will it take for the sample to triple from the time t = 0?

Answers

$$1. \ \, a) \ \ \, 8 \cdot 4^x \qquad \ \, b) \ \, \frac{45}{3^x} \qquad \ \, c) \ \, \frac{1}{60} \left(\frac{2}{9}\right)^x \qquad \quad \, d) \ \, \left(\frac{15}{16}\right) \cdot 50^x \qquad \quad \, e) \ \, 1250 \qquad \quad \, f) \ \, 4 \cdot 2^x \qquad \quad g) \ \, 90$$

h) 5 i)
$$4\sqrt{6}(3^x)$$
 j) 16 k) $\frac{5^x}{50}$

g)
$$\frac{\ln 200}{\ln 5 - \ln 2}$$
 h) ± 1 i) $\ln 2$ j) $\log_{40} 30$ k) $\log_2 \left(\frac{2}{27}\right)$ l) 2 m) no solution

3. a) during the 6th year
$$(x=\frac{\ln 2}{\ln 1.13}\approx 5.67142)$$

b) during the 33rd year
$$(x=\frac{\ln 50}{\ln 1.13} \approx 32.008\,663)$$

c) during the 82nd year
$$(x = \frac{\ln 20\,000}{\ln 1.13} \approx 81.031\,577)$$

c)
$$\frac{\ln 0.01}{\ln \left(\frac{7}{8}\right)}$$
 hours ≈ 34.48755 hours

d)
$$\frac{\ln 0.5}{\ln \left(\frac{7}{8}\right)} \approx 5.1909 \text{ hours}$$

5. a)
$$100\,000$$
 b) $\frac{\ln 3}{0.3 \ln 1.4}$ hours $\approx 10.883\,635$ hours